
	

Continue

https://norin.co.za/YmrXLWy8?keyword=multivariate%20statistics%20in%20python

Multivariate	statistics	in	python

Univariate	data	analysis	is	the	simplest	form	of	data	analysis.	As	the	name	suggests,	it	deals	with	one	variable.	It	doesn’t	find	cause	and	effect	or	relationship	between	variables.	The	purpose	of	univariate	data	analysis	is	to	summarize	and	describe	one	data	or	one	variable.	If	two	variables	are	included,	it	becomes	bivariate.	In	this	article,	we	will
understand	and	visualize	some	data	using	univariate	and	bivariate	data	analysis.	In	some	practice,	we	will	include	three	variables	as	well.	All	the	information	is	true	only	for	the	particular	dataset	used	in	this	article.Know	the	DatasetWe	will	use	the	Heart	dataset	from	Kaggle.	First	import	the	packages	and	the	dataset.Let’s	see	the	column	names
clearly:You	may	not	understand	now	what	each	column	means.	I	will	only	use	a	few	columns	in	this	article	and	I	will	keep	explaining	what	the	column	name	means	as	we	go.Solve	Some	QuestionsFind	the	population	proportions	with	different	types	of	blood	disorders.We	will	find	that	in	the	‘Thal’	column.	Here,	‘Thal’	means	a	blood	disorder	called
thalassemia.	There	is	a	function	in	Pandas	called	‘value_counts’	that	count	the	value	of	each	category	in	a	Series.These	are	the	numbers	of	people	having	normal,	reversible,	and	fixed	disorders.	Now,	divide	each	of	them	with	the	total	population	to	find	the	population	proportion.If	you	notice,	these	proportions	do	not	add	up	to	1.	There	is	one	thing	we
missed	in	this	calculation.	There	might	be	some	values.	Fill	those	spaced	with	‘Missing’	And	then	calculate	the	proportions	again.So,	there	were	a	few	missing	values.	In	this	dataset,	54.79%	of	people	have	normal	thalassemia.	The	next	big	one	was	38.16%,	who	have	reversible	thalassemia.2.	Find	the	minimum,	maximum,	average,	and	standard
deviation	of	Cholesterol	data.There	is	a	function	called	‘describe’.	Let’s	use	that.	We	will	get	all	the	information	we	needed	and	also	some	other	useful	parameters	which	will	help	us	understand	the	data	even	better.So,	we	got	a	few	extra	useful	parameters.	The	population	count	is	303.	We	are	not	going	to	use	that	in	this	article.	But	it	is	important	in
statistical	analysis.	Especially	in	inferential	statistics.	‘describe’	function	also	returns	25%,	50%,	and	75%	percentile	data	that	gives	an	idea	of	the	distribution	of	the	data.3.	Make	a	plot	of	the	distribution	of	the	Cholesterol	data.The	distribution	is	slightly	right-skewed	with	some	outliers.4.	Find	the	mean	of	the	RestBP	(Resting	Blood	Pressure).	Then,
calculate	the	population	proportion	of	the	people	who	have	the	higher	RestBP	than	the	mean	RestBP.Mean	RestBP	was	131.69.	First,	find	the	dataset	where	RestBP	is	bigger	than	mean	RestBP.	Divide	it	by	the	length	of	the	total	dataset.The	result	is	0.44	or	44%.5.	Plot	the	Cholesterol	data	against	the	age	group	to	observe	the	difference	in	cholesterol
levels	in	different	age	groups	of	people.Here	is	the	solution.	Make	a	new	column	in	the	dataset	that	will	return	the	number	of	people	in	the	different	age	groups.Now,	make	the	boxplots.	Place	age	groups	on	the	x-axis	and	the	cholesterol	level	in	the	y-axis.The	box	plot	shows	an	increasing	trend	of	cholesterol	with	the	increasing	age.	It	is	a	good	idea	to
check	if	gender	plays	any	role.	If	the	cholesterol	level	differs	in	different	genders.	In	our	sex	column,	we	have	the	numbers	0	and	1	for	females	and	males.	We	will	make	a	new	column	replacing	0	or	1	with	‘Male’	and	‘Female’.Overall,	the	female	population	in	this	dataset	has	a	higher	level	of	cholesterol.	In	the	age	group	of	29	to	40,	it	is	different.	In
the	age	group	of	70	to	80,	there	is	cholesterol	level	only	in	the	female	population.	That	does	not	mean	that	the	male	population	in	that	age	has	no	cholesterol.	In	our	dataset,	we	do	not	have	enough	male	population	in	that	age	group.	It	will	be	helpful	to	understand	if	we	plot	the	male	and	female	population	against	the	age.6.	Make	a	chart	to	show	the
number	of	people	having	each	type	of	chest	pain	in	each	age	group.For	each	type	of	chest	pain,	the	maximum	people	seem	to	be	in	the	age	group	of	50	to	60.	Probably	because	we	have	the	most	number	of	people	in	that	age	group	in	our	dataset.	Look	at	the	picture	above.7.	Make	the	same	chart	as	the	previous	practice	with	the	addition	of	Gender
variable.	Segregate	the	numbers	by	gender.8.	Present	the	population	proportion	for	each	type	of	chest	pain	in	the	same	groups	in	the	previous	chart.That	was	the	last	exercise.	These	were	some	techniques	to	make	univariate	and	multivariate	charts	and	plots.	I	hope	that	was	helpful.	Here,	I	have	links	to	some	relevant	articles:Understanding	the	data
using	histogram	and	boxplot2.	Confidence	Interval,	Calculation,	and	Characteristics3.	Confidence	Intervals	of	Population	Proportion	and	the	Difference	in	Python4.	How	to	Calculate	Confidence	Interval	of	Mean	and	the	Difference	of	Mean5.	How	to	Formulate	Good	Research	Question	for	Data	Analysis	Something	went	wrong.	Wait	a	moment	and	try
again.	©	1996,	Amazon.com,	Inc.	ou	suas	afiliadas	A	Little	Book	of	Python	for	Multivariate	Analysis	©	Copyright	2016,	Yiannis	Gatsoulis.	Revision	0ceb35f6.	Built	with	Sphinx	using	a	theme	provided	by	Read	the	Docs.	A	Little	Book	of	Python	for	Multivariate	Analysis	This	booklet	tells	you	how	to	use	the	Python	ecosystem	to	carry	out	some	simple
multivariate	analyses,	with	a	focus	on	principal	components	analysis	(PCA)	and	linear	discriminant	analysis	(LDA).	This	booklet	assumes	that	the	reader	has	some	basic	knowledge	of	multivariate	analyses,	and	the	principal	focus	of	the	booklet	is	not	to	explain	multivariate	analyses,	but	rather	to	explain	how	to	carry	out	these	analyses	using	Python.	If
you	are	new	to	multivariate	analysis,	and	want	to	learn	more	about	any	of	the	concepts	presented	here,	there	are	a	number	of	good	resources,	such	as	for	example	Multivariate	Data	Analysis	by	Hair	et.	al.	or	Applied	Multivariate	Data	Analysis	by	Everitt	and	Dunn.	In	the	examples	in	this	booklet,	I	will	be	using	data	sets	from	the	UCI	Machine	Learning
Repository.	Although	there	are	a	number	of	ways	of	getting	Python	to	your	system,	for	a	hassle	free	install	and	quick	start	using,	I	highly	recommend	downloading	and	installing	Anaconda	by	Continuum,	which	is	a	Python	distribution	that	contains	the	core	packages	plus	a	large	number	of	packages	for	scientific	computing	and	tools	to	easily	update
them,	install	new	ones,	create	virtual	environments,	and	provide	IDEs	such	as	this	one,	the	Jupyter	notebook	(formerly	known	as	ipython	notebook).	This	notebook	was	created	with	python	2.7	version.	For	exact	details,	including	versions	of	the	other	libraries,	see	the	%watermark	directive	below.	Python	can	typically	do	less	out	of	the	box	than	other
languages,	and	this	is	due	to	being	a	genaral	programming	language	taking	a	more	modular	approach,	relying	on	other	packages	for	specialized	tasks.	The	following	libraries	are	used	here:	pandas:	The	Python	Data	Analysis	Library	is	used	for	storing	the	data	in	dataframes	and	manipulation.	numpy:	Python	scientific	computing	library.	matplotlib:
Python	plotting	library.	seaborn:	Statistical	data	visualization	based	on	matplotlib.	scikit-learn:	Sklearn	is	a	machine	learning	library	for	Python.	scipy.stats:	Provides	a	number	of	probability	distributions	and	statistical	functions.	These	should	have	been	installed	for	you	if	you	have	installed	the	Anaconda	Python	distribution.	The	libraries	versions	are:
from	__future__	import	print_function,	division	#	for	compatibility	with	python	3.x	import	warnings	warnings.filterwarnings('ignore')	#	don't	print	out	warnings	%install_ext	%load_ext	watermark	%watermark	-v	-m	-p	python,pandas,numpy,matplotlib,seaborn,scikit-learn,scipy	-g	Installed	watermark.py.	To	use	it,	type:	%load_ext	watermark	CPython
2.7.11	IPython	4.0.3	python	2.7.11	pandas	0.17.1	numpy	1.10.4	matplotlib	1.5.1	seaborn	0.7.0	scikit-learn	0.17	scipy	0.17.0	compiler	:	GCC	4.2.1	(Apple	Inc.	build	5577)	system	:	Darwin	release	:	13.4.0	machine	:	x86_64	processor	:	i386	CPU	cores	:	4	interpreter:	64bit	Git	hash	:	b584574b9a5080bac2e592d4432f9c17c1845c18	from	pydoc	import	help
#	can	type	in	the	python	console	`help(name	of	function)`	to	get	the	documentation	import	pandas	as	pd	import	numpy	as	np	import	matplotlib.pyplot	as	plt	import	seaborn	as	sns	from	sklearn.preprocessing	import	scale	from	sklearn.decomposition	import	PCA	from	sklearn.discriminant_analysis	import	LinearDiscriminantAnalysis	from	scipy	import
stats	from	IPython.display	import	display,	HTML	#	figures	inline	in	notebook	%matplotlib	inline	np.set_printoptions(suppress=True)	DISPLAY_MAX_ROWS	=	20	#	number	of	max	rows	to	print	for	a	DataFrame	pd.set_option('display.max_rows',	DISPLAY_MAX_ROWS)	A	useful	tool	to	have	aside	a	notebook	for	quick	experimentation	and	data
visualization	is	a	python	console	attached.	Uncomment	the	following	line	if	you	wish	to	have	one.	The	first	thing	that	you	will	want	to	do	to	analyse	your	multivariate	data	will	be	to	read	it	into	Python,	and	to	plot	the	data.	For	data	analysis	an	I	will	be	using	the	Python	Data	Analysis	Library	(pandas,	imported	as	pd),	which	provides	a	number	of	useful
functions	for	reading	and	analyzing	the	data,	as	well	as	a	DataFrame	storage	structure,	similar	to	that	found	in	other	popular	data	analytics	languages,	such	as	R.	For	example,	the	file	contains	data	on	concentrations	of	13	different	chemicals	in	wines	grown	in	the	same	region	in	Italy	that	are	derived	from	three	different	cultivars.	The	data	set	looks
like	this:	1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065	1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050	1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185	1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480	1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735	...	There	is	one	row	per
wine	sample.	The	first	column	contains	the	cultivar	of	a	wine	sample	(labelled	1,	2	or	3),	and	the	following	thirteen	columns	contain	the	concentrations	of	the	13	different	chemicals	in	that	sample.	The	columns	are	separated	by	commas,	i.e.	it	is	a	comma-separated	(csv)	file	without	a	header	row.	The	data	can	be	read	in	a	pandas	dataframe	using	the
read_csv()	function.	The	argument	header=None	tells	the	function	that	there	is	no	header	in	the	beginning	of	the	file.	data	=	pd.read_csv("	,	header=None)	data.columns	=	["V"+str(i)	for	i	in	range(1,	len(data.columns)+1)]	#	rename	column	names	to	be	similar	to	R	naming	convention	data.V1	=	data.V1.astype(str)	X	=	data.loc[:,	"V2":]	#	independent
variables	data	y	=	data.V1	#	dependednt	variable	data	data	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.640000	1.04	3.92	1065	1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.380000	1.05	3.40	1050	2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.680000	1.03	3.17	1185	3	1	14.37	1.95
2.50	16.8	113	3.85	3.49	0.24	2.18	7.800000	0.86	3.45	1480	4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.320000	1.04	2.93	735	5	1	14.20	1.76	2.45	15.2	112	3.27	3.39	0.34	1.97	6.750000	1.05	2.85	1450	6	1	14.39	1.87	2.45	14.6	96	2.50	2.52	0.30	1.98	5.250000	1.02	3.58	1290	7	1	14.06	2.15	2.61	17.6	121	2.60	2.51	0.31	1.25	5.050000	1.06	3.58
1295	8	1	14.83	1.64	2.17	14.0	97	2.80	2.98	0.29	1.98	5.200000	1.08	2.85	1045	9	1	13.86	1.35	2.27	16.0	98	2.98	3.15	0.22	1.85	7.220000	1.01	3.55	1045	168	3	13.58	2.58	2.69	24.5	105	1.55	0.84	0.39	1.54	8.660000	0.74	1.80	750	169	3	13.40	4.60	2.86	25.0	112	1.98	0.96	0.27	1.11	8.500000	0.67	1.92	630	170	3
12.20	3.03	2.32	19.0	96	1.25	0.49	0.40	0.73	5.500000	0.66	1.83	510	171	3	12.77	2.39	2.28	19.5	86	1.39	0.51	0.48	0.64	9.899999	0.57	1.63	470	172	3	14.16	2.51	2.48	20.0	91	1.68	0.70	0.44	1.24	9.700000	0.62	1.71	660	173	3	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06	7.700000	0.64	1.74	740	174	3	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41
7.300000	0.70	1.56	750	175	3	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35	10.200000	0.59	1.56	835	176	3	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46	9.300000	0.60	1.62	840	177	3	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35	9.200000	0.61	1.60	560	178	rows	×	14	columns	In	this	case	the	data	on	178	samples	of	wine	has	been	read	into	the
variable	data.	Once	you	have	read	a	multivariate	data	set	into	python,	the	next	step	is	usually	to	make	a	plot	of	the	data.	One	common	way	of	plotting	multivariate	data	is	to	make	a	matrix	scatterplot,	showing	each	pair	of	variables	plotted	against	each	other.	We	can	use	the	scatter_matrix()	function	from	the	pandas.tools.plotting	package	to	do	this.	To
use	the	scatter_matrix()	function,	you	need	to	give	it	as	its	input	the	variables	that	you	want	included	in	the	plot.	Say	for	example,	that	we	just	want	to	include	the	variables	corresponding	to	the	concentrations	of	the	first	five	chemicals.	These	are	stored	in	columns	V2-V6	of	the	variable	data.	The	parameter	diagonal	allows	us	to	specify	whether	to	plot
a	histogram	("hist")	or	a	Kernel	Density	Estimation	("kde")	for	the	variable.	We	can	extract	just	these	columns	from	the	variable	data	by	typing:	V2	V3	V4	V5	V6	0	14.23	1.71	2.43	15.6	127	1	13.20	1.78	2.14	11.2	100	2	13.16	2.36	2.67	18.6	101	3	14.37	1.95	2.50	16.8	113	4	13.24	2.59	2.87	21.0	118	5	14.20	1.76	2.45	15.2	112	6	14.39	1.87	2.45	14.6	96
7	14.06	2.15	2.61	17.6	121	8	14.83	1.64	2.17	14.0	97	9	13.86	1.35	2.27	16.0	98	168	13.58	2.58	2.69	24.5	105	169	13.40	4.60	2.86	25.0	112	170	12.20	3.03	2.32	19.0	96	171	12.77	2.39	2.28	19.5	86	172	14.16	2.51	2.48	20.0	91	173	13.71	5.65	2.45	20.5	95	174	13.40	3.91	2.48	23.0	102	175	13.27	4.28	2.26	20.0	120	176	13.17	2.59	2.37
20.0	120	177	14.13	4.10	2.74	24.5	96	178	rows	×	5	columns	To	make	a	matrix	scatterplot	of	just	these	5	variables	using	the	scatter_matrix()	function	we	type:	pd.tools.plotting.scatter_matrix(data.loc[:,	"V2":"V6"],	diagonal="kde")	plt.tight_layout()	plt.show()	In	this	matrix	scatterplot,	the	diagonal	cells	show	histograms	of	each	of	the	variables,	in	this
case	the	concentrations	of	the	first	five	chemicals	(variables	V2,	V3,	V4,	V5,	V6).	Each	of	the	off-diagonal	cells	is	a	scatterplot	of	two	of	the	five	chemicals,	for	example,	the	second	cell	in	the	first	row	is	a	scatterplot	of	V2	(y-axis)	against	V3	(x-axis).	If	you	see	an	interesting	scatterplot	for	two	variables	in	the	matrix	scatterplot,	you	may	want	to	plot	that
scatterplot	in	more	detail,	with	the	data	points	labelled	by	their	group	(their	cultivar	in	this	case).	For	example,	in	the	matrix	scatterplot	above,	the	cell	in	the	third	column	of	the	fourth	row	down	is	a	scatterplot	of	V5	(x-axis)	against	V4	(y-axis).	If	you	look	at	this	scatterplot,	it	appears	that	there	may	be	a	positive	relationship	between	V5	and	V4.	We
may	therefore	decide	to	examine	the	relationship	between	V5	and	V4	more	closely,	by	plotting	a	scatterplot	of	these	two	variables,	with	the	data	points	labelled	by	their	group	(their	cultivar).	To	plot	a	scatterplot	of	two	variables,	we	can	use	the	lmplot	function	from	the	seaborn	package.	The	V4	and	V5	variables	are	stored	in	the	columns	V4	and	V5	of
the	variable	data.	The	first	two	parameters	in	the	lmplot()	function	are	the	columns	to	be	plotted	against	each	other	in	x-y,	the	third	parameter	specifies	the	data,	the	hue	parameter	is	the	column	name	used	for	the	labels	of	the	datapoints,	i.e.	the	classes	they	belong	to,	lastly,	the	fit_reg	parameter	is	set	to	False	when	we	do	not	want	to	plot	a
regression	model	relating	to	the	x-y	variables.	Therefore,	to	plot	the	scatterplot,	we	type:	sns.lmplot("V4",	"V5",	data,	hue="V1",	fit_reg=False);	We	can	see	from	the	scatterplot	of	V4	versus	V5	that	the	wines	from	cultivar	2	seem	to	have	lower	values	of	V4	compared	to	the	wines	of	cultivar	1.	Another	type	of	plot	that	is	useful	is	a	profile	plot,	which
shows	the	variation	in	each	of	the	variables,	by	plotting	the	value	of	each	of	the	variables	for	each	of	the	samples.	This	can	be	achieved	using	pandas	plot	facilities,	which	are	built	upon	matplotlib,	by	running	the	following:	ax	=	data[["V2","V3","V4","V5","V6"]].plot()	ax.legend(loc='center	left',	bbox_to_anchor=(1,	0.5));	It	is	clear	from	the	profile	plot
that	the	mean	and	standard	deviation	for	V6	is	quite	a	lot	higher	than	that	for	the	other	variables.	Another	thing	that	you	are	likely	to	want	to	do	is	to	calculate	summary	statistics	such	as	the	mean	and	standard	deviation	for	each	of	the	variables	in	your	multivariate	data	set.	This	is	easy	to	do,	using	the	mean()	and	std()	functions	in	numpy	and
applying	them	to	the	dataframe	using	its	member	function	apply.	Pandas	allows	to	do	simple	operations	directly	calling	them	as	methods,	for	example	we	could	do	compute	the	means	of	a	dataframe	`df`	by	calling	`df.mean()`.An	alternative	option	is	to	use	the	apply	method	of	the	pandas.DataFrame	class,	which	applies	the	passed	argument	function
along	the	input	axis	of	the	DataFrame.	This	method	is	powerful	as	it	allows	passing	any	function	we	want	to	be	applied	in	our	data.	For	example,	say	we	want	to	calculate	the	mean	and	standard	deviations	of	each	of	the	13	chemical	concentrations	in	the	wine	samples.	These	are	stored	in	columns	V2-V14	of	the	variable	data,	which	has	been	previously
assigned	to	X	for	convenience.	So	we	type:	V2	13.000618	V3	2.336348	V4	2.366517	V5	19.494944	V6	99.741573	V7	2.295112	V8	2.029270	V9	0.361854	V10	1.590899	V11	5.058090	V12	0.957449	V13	2.611685	V14	746.893258	dtype:	float64	This	tells	us	that	the	mean	of	variable	V2	is	13.000618,	the	mean	of	V3	is	2.336348,	and	so	on.	Similarly,	to
get	the	standard	deviations	of	the	13	chemical	concentrations,	we	type:	V2	0.809543	V3	1.114004	V4	0.273572	V5	3.330170	V6	14.242308	V7	0.624091	V8	0.996049	V9	0.124103	V10	0.570749	V11	2.311765	V12	0.227929	V13	0.707993	V14	314.021657	dtype:	float64	We	can	see	here	that	it	would	make	sense	to	standardise	in	order	to	compare	the
variables	because	the	variables	have	very	different	standard	deviations	-	the	standard	deviation	of	V14	is	314.021657,	while	the	standard	deviation	of	V9	is	just	0.124103.	Thus,	in	order	to	compare	the	variables,	we	need	to	standardise	each	variable	so	that	it	has	a	sample	variance	of	1	and	sample	mean	of	0.	We	will	explain	below	how	to	standardise
the	variables.	It	is	often	interesting	to	calculate	the	means	and	standard	deviations	for	just	the	samples	from	a	particular	group,	for	example,	for	the	wine	samples	from	each	cultivar.	The	cultivar	is	stored	in	the	column	V1	of	the	variable	data,	which	has	been	previously	assigned	to	y	for	convenience.	To	extract	out	the	data	for	just	cultivar	2,	we	can
type:	class2data	=	data[y=="2"]	We	can	then	calculate	the	mean	and	standard	deviations	of	the	13	chemicals’	concentrations,	for	just	the	cultivar	2	samples:	class2data.loc[:,	"V2":].apply(np.mean)	V2	12.278732	V3	1.932676	V4	2.244789	V5	20.238028	V6	94.549296	V7	2.258873	V8	2.080845	V9	0.363662	V10	1.630282	V11	3.086620	V12	1.056282
V13	2.785352	V14	519.507042	dtype:	float64	class2data.loc[:,	"V2":].apply(np.std)	V2	0.534162	V3	1.008391	V4	0.313238	V5	3.326097	V6	16.635097	V7	0.541507	V8	0.700713	V9	0.123085	V10	0.597813	V11	0.918393	V12	0.201503	V13	0.493064	V14	156.100173	dtype:	float64	You	can	calculate	the	mean	and	standard	deviation	of	the	13	chemicals’
concentrations	for	just	cultivar	1	samples,	or	for	just	cultivar	3	samples,	in	a	similar	way.	However,	for	convenience,	you	might	want	to	use	the	function	printMeanAndSdByGroup()	below,	which	prints	out	the	mean	and	standard	deviation	of	the	variables	for	each	group	in	your	data	set:	def	printMeanAndSdByGroup(variables,	groupvariable):
data_groupby	=	variables.groupby(groupvariable)	print("##	Means:")	display(data_groupby.apply(np.mean))	print("##	Standard	deviations:")	display(data_groupby.apply(np.std))	print("##	Sample	sizes:")	display(pd.DataFrame(data_groupby.apply(len)))	The	arguments	of	the	function	are	the	variables	that	you	want	to	calculate	means	and	standard
deviations	for	(X),	and	the	variable	containing	the	group	of	each	sample	(y).	For	example,	to	calculate	the	mean	and	standard	deviation	for	each	of	the	13	chemical	concentrations,	for	each	of	the	three	different	wine	cultivars,	we	type:	printMeanAndSdByGroup(X,	y)	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V1	1	13.744746	2.010678	2.455593
17.037288	106.338983	2.840169	2.982373	0.290000	1.899322	5.528305	1.062034	3.157797	1115.711864	2	12.278732	1.932676	2.244789	20.238028	94.549296	2.258873	2.080845	0.363662	1.630282	3.086620	1.056282	2.785352	519.507042	3	13.153750	3.333750	2.437083	21.416667	99.312500	1.678750	0.781458	0.447500	1.153542	7.396250
0.682708	1.683542	629.895833	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V1	1	0.458192	0.682689	0.225233	2.524651	10.409595	0.336077	0.394111	0.069453	0.408602	1.228032	0.115491	0.354038	219.635449	2	0.534162	1.008391	0.313238	3.326097	16.635097	0.541507	0.700713	0.123085	0.597813	0.918393	0.201503	0.493064
156.100173	3	0.524689	1.076514	0.182756	2.234515	10.776433	0.353233	0.290431	0.122840	0.404555	2.286743	0.113243	0.269262	113.891805	The	function	printMeanAndSdByGroup()	also	prints	out	the	number	of	samples	in	each	group.	In	this	case,	we	see	that	there	are	59	samples	of	cultivar	1,	71	of	cultivar	2,	and	48	of	cultivar	3.	If	we	want	to
calculate	the	within-groups	variance	for	a	particular	variable	(for	example,	for	a	particular	chemical’s	concentration),	we	can	use	the	function	calcWithinGroupsVariance()	below:	def	calcWithinGroupsVariance(variable,	groupvariable):	#	find	out	how	many	values	the	group	variable	can	take	levels	=	sorted(set(groupvariable))	numlevels	=	len(levels)	#
get	the	mean	and	standard	deviation	for	each	group:	numtotal	=	0	denomtotal	=	0	for	leveli	in	levels:	levelidata	=	variable[groupvariable==leveli]	levelilength	=	len(levelidata)	#	get	the	standard	deviation	for	group	i:	sdi	=	np.std(levelidata)	numi	=	(levelilength)*sdi**2	denomi	=	levelilength	numtotal	=	numtotal	+	numi	denomtotal	=	denomtotal	+
denomi	#	calculate	the	within-groups	variance	Vw	=	numtotal	/	(denomtotal	-	numlevels)	return	Vw	The	variable	parameter	of	the	function	calcWithinGroupsVariance()	is	the	input	variable	for	which	we	wish	to	compute	its	within-groups	variance	for	the	groups	given	in	groupvariable.	So	for	example,	to	calculate	the	within-groups	variance	of	the
variable	V2	(the	concentration	of	the	first	chemical),	we	type:	calcWithinGroupsVariance(X.V2,	y)	Thus,	the	within-groups	variance	for	V2	is	0.2620525.	We	can	calculate	the	between-groups	variance	for	a	particular	variable	(eg.	V2)	using	the	function	calcBetweenGroupsVariance()	below:	def	calcBetweenGroupsVariance(variable,	groupvariable):	#
find	out	how	many	values	the	group	variable	can	take	levels	=	sorted(set((groupvariable)))	numlevels	=	len(levels)	#	calculate	the	overall	grand	mean:	grandmean	=	np.mean(variable)	#	get	the	mean	and	standard	deviation	for	each	group:	numtotal	=	0	denomtotal	=	0	for	leveli	in	levels:	levelidata	=	variable[groupvariable==leveli]	levelilength	=
len(levelidata)	#	get	the	mean	and	standard	deviation	for	group	i:	meani	=	np.mean(levelidata)	sdi	=	np.std(levelidata)	numi	=	levelilength	*	((meani	-	grandmean)**2)	denomi	=	levelilength	numtotal	=	numtotal	+	numi	denomtotal	=	denomtotal	+	denomi	#	calculate	the	between-groups	variance	Vb	=	numtotal	/	(numlevels	-	1)	return(Vb)	Similarly	to
the	parameters	of	the	function	calcWithinGroupsVariance(),	the	variable	parameter	of	the	function	calcBetweenGroupsVariance()	is	the	input	variable	for	which	we	wish	to	compute	its	between-groups	variance	for	the	groups	given	in	groupvariable.	So	for	example,	to	calculate	the	between-groups	variance	of	the	variable	V2	(the	concentration	of	the
first	chemical),	we	type:	calcBetweenGroupsVariance(X.V2,	y)	Thus,	the	between-groups	variance	of	V2	is	35.397425.	We	can	calculate	the	separation	achieved	by	a	variable	as	its	between-groups	variance	devided	by	its	within-groups	variance.	Thus,	the	separation	achieved	by	V2	is	calculated	as:	#	35.397424960269106	/	0.2620524691539065
calcBetweenGroupsVariance(X.V2,	y)	/	calcWithinGroupsVariance(X.V2,	y)	If	you	want	to	calculate	the	separations	achieved	by	all	of	the	variables	in	a	multivariate	data	set,	you	can	use	the	function	calcSeparations()	below:	def	calcSeparations(variables,	groupvariable):	#	calculate	the	separation	for	each	variable	for	variablename	in	variables:
variablei	=	variables[variablename]	Vw	=	calcWithinGroupsVariance(variablei,	groupvariable)	Vb	=	calcBetweenGroupsVariance(variablei,	groupvariable)	sep	=	Vb/Vw	print("variable",	variablename,	"Vw=",	Vw,	"Vb=",	Vb,	"separation=",	sep)	For	example,	to	calculate	the	separations	for	each	of	the	13	chemical	concentrations,	we	type:	variable	V2
Vw=	0.262052469154	Vb=	35.3974249603	separation=	135.077624243	variable	V3	Vw=	0.887546796747	Vb=	32.7890184869	separation=	36.9434249632	variable	V4	Vw=	0.0660721013425	Vb=	0.879611357249	separation=	13.3129012	variable	V5	Vw=	8.00681118121	Vb=	286.416746363	separation=	35.7716374073	variable	V6	Vw=
180.657773164	Vb=	2245.50102789	separation=	12.4295843381	variable	V7	Vw=	0.191270475224	Vb=	17.9283572943	separation=	93.7330096204	variable	V8	Vw=	0.274707514337	Vb=	64.2611950236	separation=	233.925872682	variable	V9	Vw=	0.0119117022133	Vb=	0.328470157462	separation=	27.575417147	variable	V10	Vw=
0.246172943796	Vb=	7.45199550778	separation=	30.2713831702	variable	V11	Vw=	2.28492308133	Vb=	275.708000822	separation=	120.664018441	variable	V12	Vw=	0.0244876469432	Vb=	2.48100991494	separation=	101.31679539	variable	V13	Vw=	0.160778729561	Vb=	30.5435083544	separation=	189.972320579	variable	V14	Vw=
29707.6818705	Vb=	6176832.32228	separation=	207.920373902	Thus,	the	individual	variable	which	gives	the	greatest	separations	between	the	groups	(the	wine	cultivars)	is	V8	(separation	233.9).	As	we	will	discuss	below,	the	purpose	of	linear	discriminant	analysis	(LDA)	is	to	find	the	linear	combination	of	the	individual	variables	that	will	give	the
greatest	separation	between	the	groups	(cultivars	here).	This	hopefully	will	give	a	better	separation	than	the	best	separation	achievable	by	any	individual	variable	(233.9	for	V8	here).	If	you	have	a	multivariate	data	set	with	several	variables	describing	sampling	units	from	different	groups,	such	as	the	wine	samples	from	different	cultivars,	it	is	often	of
interest	to	calculate	the	within-groups	covariance	and	between-groups	variance	for	pairs	of	the	variables.	This	can	be	done	using	the	following	functions:	def	calcWithinGroupsCovariance(variable1,	variable2,	groupvariable):	levels	=	sorted(set(groupvariable))	numlevels	=	len(levels)	Covw	=	0.0	#	get	the	covariance	of	variable	1	and	variable	2	for
each	group:	for	leveli	in	levels:	levelidata1	=	variable1[groupvariable==leveli]	levelidata2	=	variable2[groupvariable==leveli]	mean1	=	np.mean(levelidata1)	mean2	=	np.mean(levelidata2)	levelilength	=	len(levelidata1)	#	get	the	covariance	for	this	group:	term1	=	0.0	for	levelidata1j,	levelidata2j	in	zip(levelidata1,	levelidata2):	term1	+=	(levelidata1j
-	mean1)*(levelidata2j	-	mean2)	Cov_groupi	=	term1	#	covariance	for	this	group	Covw	+=	Cov_groupi	totallength	=	len(variable1)	Covw	/=	totallength	-	numlevels	return	Covw	For	example,	to	calculate	the	within-groups	covariance	for	variables	V8	and	V11,	we	type:	calcWithinGroupsCovariance(X.V8,	X.V11,	y)	def
calcBetweenGroupsCovariance(variable1,	variable2,	groupvariable):	#	find	out	how	many	values	the	group	variable	can	take	levels	=	sorted(set(groupvariable))	numlevels	=	len(levels)	#	calculate	the	grand	means	variable1mean	=	np.mean(variable1)	variable2mean	=	np.mean(variable2)	#	calculate	the	between-groups	covariance	Covb	=	0.0	for
leveli	in	levels:	levelidata1	=	variable1[groupvariable==leveli]	levelidata2	=	variable2[groupvariable==leveli]	mean1	=	np.mean(levelidata1)	mean2	=	np.mean(levelidata2)	levelilength	=	len(levelidata1)	term1	=	(mean1	-	variable1mean)	*	(mean2	-	variable2mean)	*	levelilength	Covb	+=	term1	Covb	/=	numlevels	-	1	return	Covb	For	example,	to
calculate	the	between-groups	covariance	for	variables	V8	and	V11,	we	type:	calcBetweenGroupsCovariance(X.V8,	X.V11,	y)	Thus,	for	V8	and	V11,	the	between-groups	covariance	is	-60.41	and	the	within-groups	covariance	is	0.29.	Since	the	within-groups	covariance	is	positive	(0.29),	it	means	V8	and	V11	are	positively	related	within	groups:	for
individuals	from	the	same	group,	individuals	with	a	high	value	of	V8	tend	to	have	a	high	value	of	V11,	and	vice	versa.	Since	the	between-groups	covariance	is	negative	(-60.41),	V8	and	V11	are	negatively	related	between	groups:	groups	with	a	high	mean	value	of	V8	tend	to	have	a	low	mean	value	of	V11,	and	vice	versa.	It	is	often	of	interest	to
investigate	whether	any	of	the	variables	in	a	multivariate	data	set	are	significantly	correlated.	To	calculate	the	linear	(Pearson)	correlation	coefficient	for	a	pair	of	variables,	you	can	use	the	pearsonr()	function	from	scipy.stats	package.	For	example,	to	calculate	the	correlation	coefficient	for	the	first	two	chemicals’	concentrations,	V2	and	V3,	we	type:
corr	=	stats.pearsonr(X.V2,	X.V3)	print("p-value:\t",	corr[1])	print("cor:\t\t",	corr[0])	p-value:	0.210081985971	cor:	0.0943969409104	This	tells	us	that	the	correlation	coefficient	is	about	0.094,	which	is	a	very	weak	correlation.	Furthermore,	the	p-value	for	the	statistical	test	of	whether	the	correlation	coefficient	is	significantly	different	from	zero	is
0.21.	This	is	much	greater	than	0.05	(which	we	can	use	here	as	a	cutoff	for	statistical	significance),	so	there	is	very	weak	evidence	that	that	the	correlation	is	non-zero.	If	you	have	a	lot	of	variables,	you	can	use	the	pandas.DataFrame	method	corr()	to	calculate	a	correlation	matrix	that	shows	the	correlation	coefficient	for	each	pair	of	variables.
corrmat	=	X.corr()	corrmat	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V2	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	-0.155929	0.136698	0.546364	-0.071747	0.072343	0.643720	V3	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.292977	-0.220746	0.248985	-0.561296	-0.368710	-0.192011	V4
0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.186230	0.009652	0.258887	-0.074667	0.003911	0.223626	V5	-0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	0.361922	-0.197327	0.018732	-0.273955	-0.276769	-0.440597	V6	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784
-0.256294	0.236441	0.199950	0.055398	0.066004	0.393351	V7	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.449935	0.612413	-0.055136	0.433681	0.699949	0.498115	V8	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.537900	0.652692	-0.172379	0.543479	0.787194	0.494193	V9	-0.155929
0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.000000	-0.365845	0.139057	-0.262640	-0.503270	-0.311385	V10	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	-0.365845	1.000000	-0.025250	0.295544	0.519067	0.330417	V11	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	0.139057
-0.025250	1.000000	-0.521813	-0.428815	0.316100	V12	-0.071747	-0.561296	-0.074667	-0.273955	0.055398	0.433681	0.543479	-0.262640	0.295544	-0.521813	1.000000	0.565468	0.236183	V13	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	-0.503270	0.519067	-0.428815	0.565468	1.000000	0.312761	V14	0.643720	-0.192011
0.223626	-0.440597	0.393351	0.498115	0.494193	-0.311385	0.330417	0.316100	0.236183	0.312761	1.000000	A	better	graphical	representation	of	the	correlation	matrix	is	via	a	correlation	matrix	plot	in	the	form	of	a	heatmap.	sns.heatmap(corrmat,	vmax=1.,	square=False).xaxis.tick_top()	Or	an	alternative	nice	visualization	is	via	a	Hinton	diagram.
The	color	of	the	boxes	determines	the	sign	of	the	correlation,	in	this	case	red	for	positive	and	blue	for	negative	correlations;	while	the	size	of	the	boxes	determines	their	magnitude,	the	bigger	the	box	the	higher	the	magnitude.	#	adapted	from	def	hinton(matrix,	max_weight=None,	ax=None):	"""Draw	Hinton	diagram	for	visualizing	a	weight	matrix."""
ax	=	ax	if	ax	is	not	None	else	plt.gca()	if	not	max_weight:	max_weight	=	2**np.ceil(np.log(np.abs(matrix).max())/np.log(2))	ax.patch.set_facecolor('lightgray')	ax.set_aspect('equal',	'box')	ax.xaxis.set_major_locator(plt.NullLocator())	ax.yaxis.set_major_locator(plt.NullLocator())	for	(x,	y),	w	in	np.ndenumerate(matrix):	color	=	'red'	if	w	>	0	else	'blue'	size
=	np.sqrt(np.abs(w))	rect	=	plt.Rectangle([x	-	size	/	2,	y	-	size	/	2],	size,	size,	facecolor=color,	edgecolor=color)	ax.add_patch(rect)	nticks	=	matrix.shape[0]	ax.xaxis.tick_top()	ax.set_xticks(range(nticks))	ax.set_xticklabels(list(matrix.columns),	rotation=90)	ax.set_yticks(range(nticks))	ax.set_yticklabels(matrix.columns)	ax.grid(False)
ax.autoscale_view()	ax.invert_yaxis()	hinton(corrmat)	Although	the	correlation	matrix	and	diagrams	are	useful	for	quickly	looking	to	identify	the	strongest	correlations,	they	still	require	labor	work	to	find	the	top	N	strongest	correlations.	For	this	you	can	use	the	function	mosthighlycorrelated()	below.	The	function	mosthighlycorrelated()	will	print	out
the	linear	correlation	coefficients	for	each	pair	of	variables	in	your	data	set,	in	order	of	the	correlation	coefficient.	This	lets	you	see	very	easily	which	pair	of	variables	are	most	highly	correlated.	def	mosthighlycorrelated(mydataframe,	numtoreport):	#	find	the	correlations	cormatrix	=	mydataframe.corr()	#	set	the	correlations	on	the	diagonal	or	lower
triangle	to	zero,	#	so	they	will	not	be	reported	as	the	highest	ones:	cormatrix	*=	np.tri(*cormatrix.values.shape,	k=-1).T	#	find	the	top	n	correlations	cormatrix	=	cormatrix.stack()	cormatrix	=	cormatrix.reindex(cormatrix.abs().sort_values(ascending=False).index).reset_index()	#	assign	human-friendly	names	cormatrix.columns	=	["FirstVariable",
"SecondVariable",	"Correlation"]	return	cormatrix.head(numtoreport)	The	arguments	of	the	function	are	the	variables	that	you	want	to	calculate	the	correlations	for,	and	the	number	of	top	correlation	coefficients	to	print	out	(for	example,	you	can	tell	it	to	print	out	the	largest	10	correlation	coefficients,	or	the	largest	20).	For	example,	to	calculate
correlation	coefficients	between	the	concentrations	of	the	13	chemicals	in	the	wine	samples,	and	to	print	out	the	top	10	pairwise	correlation	coefficients,	you	can	type:	mosthighlycorrelated(X,	10)	FirstVariable	SecondVariable	Correlation	0	V7	V8	0.864564	1	V8	V13	0.787194	2	V7	V13	0.699949	3	V8	V10	0.652692	4	V2	V14	0.643720	5	V7	V10
0.612413	6	V12	V13	0.565468	7	V3	V12	-0.561296	8	V2	V11	0.546364	9	V8	V12	0.543479	This	tells	us	that	the	pair	of	variables	with	the	highest	linear	correlation	coefficient	are	V7	and	V8	(correlation	=	0.86	approximately).	If	you	want	to	compare	different	variables	that	have	different	units,	are	very	different	variances,	it	is	a	good	idea	to	first
standardise	the	variables.	For	example,	we	found	above	that	the	concentrations	of	the	13	chemicals	in	the	wine	samples	show	a	wide	range	of	standard	deviations,	from	0.124103	for	V9	(variance	0.015402)	to	314.021657	for	V14	(variance	98609.60).	This	is	a	range	of	approximately	6,402,389-fold	in	the	variances.	As	a	result,	it	is	not	a	good	idea	to
use	the	unstandardised	chemical	concentrations	as	the	input	for	a	principal	component	analysis	(PCA,	see	below)	of	the	wine	samples,	as	if	you	did	that,	the	first	principal	component	would	be	dominated	by	the	variables	which	show	the	largest	variances,	such	as	V14.	Thus,	it	would	be	a	better	idea	to	first	standardise	the	variables	so	that	they	all	have
variance	1	and	mean	0,	and	to	then	carry	out	the	principal	component	analysis	on	the	standardised	data.	This	would	allow	us	to	find	the	principal	components	that	provide	the	best	low-dimensional	representation	of	the	variation	in	the	original	data,	without	being	overly	biased	by	those	variables	that	show	the	most	variance	in	the	original	data.	You	can
standardise	variables	by	using	the	scale()	function	from	the	package	sklearn.preprocessing.	For	example,	to	standardise	the	concentrations	of	the	13	chemicals	in	the	wine	samples,	we	type:	standardisedX	=	scale(X)	standardisedX	=	pd.DataFrame(standardisedX,	index=X.index,	columns=X.columns)	standardisedX.apply(np.mean)	V2	-8.619821e-16
V3	-8.357859e-17	V4	-8.657245e-16	V5	-1.160121e-16	V6	-1.995907e-17	V7	-2.972030e-16	V8	-4.016762e-16	V9	4.079134e-16	V10	-1.699639e-16	V11	-1.247442e-18	V12	3.717376e-16	V13	2.919013e-16	V14	-7.484650e-18	dtype:	float64	standardisedX.apply(np.std)	V2	1	V3	1	V4	1	V5	1	V6	1	V7	1	V8	1	V9	1	V10	1	V11	1	V12	1	V13	1	V14	1	dtype:
float64	The	purpose	of	principal	component	analysis	is	to	find	the	best	low-dimensional	representation	of	the	variation	in	a	multivariate	data	set.	For	example,	in	the	case	of	the	wine	data	set,	we	have	13	chemical	concentrations	describing	wine	samples	from	three	different	cultivars.	We	can	carry	out	a	principal	component	analysis	to	investigate
whether	we	can	capture	most	of	the	variation	between	samples	using	a	smaller	number	of	new	variables	(principal	components),	where	each	of	these	new	variables	is	a	linear	combination	of	all	or	some	of	the	13	chemical	concentrations.	To	carry	out	a	principal	component	analysis	(PCA)	on	a	multivariate	data	set,	the	first	step	is	often	to	standardise
the	variables	under	study	using	the	scale()	function	(see	above).	This	is	necessary	if	the	input	variables	have	very	different	variances,	which	is	true	in	this	case	as	the	concentrations	of	the	13	chemicals	have	very	different	variances	(see	above).	Once	you	have	standardised	your	variables,	you	can	carry	out	a	principal	component	analysis	using	the	PCA
class	from	sklearn.decomposition	package	and	its	fit	method,	which	fits	the	model	with	the	data	X.	The	default	solver	is	Singular	Value	Decomposition	(“svd”).	For	more	information	you	can	type	help(PCA)	in	the	python	console.	For	example,	to	standardise	the	concentrations	of	the	13	chemicals	in	the	wine	samples,	and	carry	out	a	principal
components	analysis	on	the	standardised	concentrations,	we	type:	pca	=	PCA().fit(standardisedX)	You	can	get	a	summary	of	the	principal	component	analysis	results	using	the	pca_summary()	function	below,	which	simulates	the	output	of	R’s	summary	function	on	a	PCA	model:	def	pca_summary(pca,	standardised_data,	out=True):	names	=
["PC"+str(i)	for	i	in	range(1,	len(pca.explained_variance_ratio_)+1)]	a	=	list(np.std(pca.transform(standardised_data),	axis=0))	b	=	list(pca.explained_variance_ratio_)	c	=	[np.sum(pca.explained_variance_ratio_[:i])	for	i	in	range(1,	len(pca.explained_variance_ratio_)+1)]	columns	=	pd.MultiIndex.from_tuples([("sdev",	"Standard	deviation"),	("varprop",
"Proportion	of	Variance"),	("cumprop",	"Cumulative	Proportion")])	summary	=	pd.DataFrame(zip(a,	b,	c),	index=names,	columns=columns)	if	out:	print("Importance	of	components:")	display(summary)	return	summary	The	parameters	of	the	print_pca_summary	function	are:	pca:	A	PCA	object	standardised_data:	The	standardised	data	out	(True):	Print
to	standard	output	summary	=	pca_summary(pca,	standardisedX)	Importance	of	components:	sdev	varprop	cumprop	Standard	deviation	Proportion	of	Variance	Cumulative	Proportion	PC1	2.169297	0.361988	0.361988	PC2	1.580182	0.192075	0.554063	PC3	1.202527	0.111236	0.665300	PC4	0.958631	0.070690	0.735990	PC5	0.923704	0.065633
0.801623	PC6	0.801035	0.049358	0.850981	PC7	0.742313	0.042387	0.893368	PC8	0.590337	0.026807	0.920175	PC9	0.537476	0.022222	0.942397	PC10	0.500902	0.019300	0.961697	PC11	0.475172	0.017368	0.979066	PC12	0.410817	0.012982	0.992048	PC13	0.321524	0.007952	1.000000	This	gives	us	the	standard	deviation	of	each	component,
and	the	proportion	of	variance	explained	by	each	component.	The	standard	deviation	of	the	components	is	stored	in	a	named	row	called	sdev	of	the	output	variable	made	by	the	pca_summary	function	and	stored	in	the	summary	variable:	Standard	deviation	PC1	2.169297	PC2	1.580182	PC3	1.202527	PC4	0.958631	PC5	0.923704	PC6	0.801035	PC7
0.742313	PC8	0.590337	PC9	0.537476	PC10	0.500902	PC11	0.475172	PC12	0.410817	PC13	0.321524	The	total	variance	explained	by	the	components	is	the	sum	of	the	variances	of	the	components:	Standard	deviation	13	dtype:	float64	In	this	case,	we	see	that	the	total	variance	is	13,	which	is	equal	to	the	number	of	standardised	variables	(13
variables).	This	is	because	for	standardised	data,	the	variance	of	each	standardised	variable	is	1.	The	total	variance	is	equal	to	the	sum	of	the	variances	of	the	individual	variables,	and	since	the	variance	of	each	standardised	variable	is	1,	the	total	variance	should	be	equal	to	the	number	of	variables	(13	here).	In	order	to	decide	how	many	principal
components	should	be	retained,	it	is	common	to	summarise	the	results	of	a	principal	components	analysis	by	making	a	scree	plot,	which	we	can	do	using	the	screeplot()	function	below:	def	screeplot(pca,	standardised_values):	y	=	np.std(pca.transform(standardised_values),	axis=0)**2	x	=	np.arange(len(y))	+	1	plt.plot(x,	y,	"o-")	plt.xticks(x,
["Comp."+str(i)	for	i	in	x],	rotation=60)	plt.ylabel("Variance")	plt.show()	screeplot(pca,	standardisedX)	The	most	obvious	change	in	slope	in	the	scree	plot	occurs	at	component	4,	which	is	the	“elbow”	of	the	scree	plot.	Therefore,	it	cound	be	argued	based	on	the	basis	of	the	scree	plot	that	the	first	three	components	should	be	retained.	Another	way	of
deciding	how	many	components	to	retain	is	to	use	Kaiser’s	criterion:	that	we	should	only	retain	principal	components	for	which	the	variance	is	above	1	(when	principal	component	analysis	was	applied	to	standardised	data).	We	can	check	this	by	finding	the	variance	of	each	of	the	principal	components:	Standard	deviation	PC1	4.705850	PC2	2.496974
PC3	1.446072	PC4	0.918974	PC5	0.853228	PC6	0.641657	PC7	0.551028	PC8	0.348497	PC9	0.288880	PC10	0.250902	PC11	0.225789	PC12	0.168770	PC13	0.103378	We	see	that	the	variance	is	above	1	for	principal	components	1,	2,	and	3	(which	have	variances	4.71,	2.50,	and	1.45,	respectively).	Therefore,	using	Kaiser’s	criterion,	we	would	retain
the	first	three	principal	components.	A	third	way	to	decide	how	many	principal	components	to	retain	is	to	decide	to	keep	the	number	of	components	required	to	explain	at	least	some	minimum	amount	of	the	total	variance.	For	example,	if	it	is	important	to	explain	at	least	80%	of	the	variance,	we	would	retain	the	first	five	principal	components,	as	we
can	see	from	cumulative	proportions	(summary.cumprop)	that	the	first	five	principal	components	explain	80.2%	of	the	variance	(while	the	first	four	components	explain	just	73.6%,	so	are	not	sufficient).	The	loadings	for	the	principal	components	are	stored	in	a	named	element	components_	of	the	variable	returned	by	PCA().fit().	This	contains	a	matrix
with	the	loadings	of	each	principal	component,	where	the	first	column	in	the	matrix	contains	the	loadings	for	the	first	principal	component,	the	second	column	contains	the	loadings	for	the	second	principal	component,	and	so	on.	Therefore,	to	obtain	the	loadings	for	the	first	principal	component	in	our	analysis	of	the	13	chemical	concentrations	in	wine
samples,	we	type:	array([-0.1443294	,	0.24518758,	0.00205106,	0.23932041,	-0.14199204,	-0.39466085,	-0.4229343	,	0.2985331	,	-0.31342949,	0.0886167	,	-0.29671456,	-0.37616741,	-0.28675223])	This	means	that	the	first	principal	component	is	a	linear	combination	of	the	variables:	-0.144*Z2	+	0.245*Z3	+	0.002*Z4	+	0.239*Z5	-	0.142*Z6	-
0.395*Z7	-	0.423*Z8	+	0.299*Z9	-0.313*Z10	+	0.089*Z11	-	0.297*Z12	-	0.376*Z13	-	0.287*Z14	where	Z2,	Z3,	Z4,	...,	Z14	are	the	standardised	versions	of	the	variables	V2,	V3,	V4,	...,	V14	(that	each	have	mean	of	0	and	variance	of	1).	Note	that	the	square	of	the	loadings	sum	to	1,	as	this	is	a	constraint	used	in	calculating	the	loadings:
np.sum(pca.components_[0]**2)	To	calculate	the	values	of	the	first	principal	component,	we	can	define	our	own	function	to	calculate	a	principal	component	given	the	loadings	and	the	input	variables’	values:	def	calcpc(variables,	loadings):	#	find	the	number	of	samples	in	the	data	set	and	the	number	of	variables	numsamples,	numvariables	=
variables.shape	#	make	a	vector	to	store	the	component	pc	=	np.zeros(numsamples)	#	calculate	the	value	of	the	component	for	each	sample	for	i	in	range(numsamples):	valuei	=	0	for	j	in	range(numvariables):	valueij	=	variables.iloc[i,	j]	loadingj	=	loadings[j]	valuei	=	valuei	+	(valueij	*	loadingj)	pc[i]	=	valuei	return	pc	We	can	then	use	the	function	to
calculate	the	values	of	the	first	principal	component	for	each	sample	in	our	wine	data:	calcpc(standardisedX,	pca.components_[0])	array([-3.31675081,	-2.20946492,	-2.51674015,	-3.75706561,	-1.00890849,	-3.05025392,	-2.44908967,	-2.05943687,	-2.5108743	,	-2.75362819,	-3.47973668,	-1.7547529	,	-2.11346234,	-3.45815682,	-4.31278391,
-2.3051882	,	-2.17195527,	-1.89897118,	-3.54198508,	-2.0845222	,	-3.12440254,	-1.08657007,	-2.53522408,	-1.64498834,	-1.76157587,	-0.9900791	,	-1.77527763,	-1.23542396,	-2.18840633,	-2.25610898,	-2.50022003,	-2.67741105,	-1.62857912,	-1.90269086,	-1.41038853,	-1.90382623,	-1.38486223,	-1.12220741,	-1.5021945	,	-2.52980109,
-2.58809543,	-0.66848199,	-3.07080699,	-0.46220914,	-2.10135193,	-1.13616618,	-2.72660096,	-2.82133927,	-2.00985085,	-2.7074913	,	-3.21491747,	-2.85895983,	-3.50560436,	-2.22479138,	-2.14698782,	-2.46932948,	-2.74151791,	-2.17374092,	-3.13938015,	0.92858197,	1.54248014,	1.83624976,	-0.03060683,	-2.05026161,	0.60968083,
-0.90022784,	-2.24850719,	-0.18338403,	0.81280503,	-1.9756205	,	1.57221622,	-1.65768181,	0.72537239,	-2.56222717,	-1.83256757,	0.8679929	,	-0.3700144	,	1.45737704,	-1.26293085,	-0.37615037,	-0.7620639	,	-1.03457797,	0.49487676,	2.53897708,	-0.83532015,	-0.78790461,	0.80683216,	0.55804262,	1.11511104,	0.55572283,	1.34928528,
1.56448261,	1.93255561,	-0.74666594,	-0.95745536,	-2.54386518,	0.54395259,	-1.03104975,	-2.25190942,	-1.41021602,	-0.79771979,	0.54953173,	0.16117374,	0.65979494,	-0.39235441,	1.77249908,	0.36626736,	1.62067257,	-0.08253578,	-1.57827507,	-1.42056925,	0.27870275,	1.30314497,	0.45707187,	0.49418585,	-0.48207441,	0.25288888,
0.10722764,	2.4330126	,	0.55108954,	-0.73962193,	-1.33632173,	1.177087	,	0.46233501,	-0.97847408,	0.09680973,	-0.03848715,	1.5971585	,	0.47956492,	1.79283347,	1.32710166,	2.38450083,	2.9369401	,	2.14681113,	2.36986949,	3.06384157,	3.91575378,	3.93646339,	3.09427612,	2.37447163,	2.77881295,	2.28656128,	2.98563349,	2.3751947	,
2.20986553,	2.625621	,	4.28063878,	3.58264137,	2.80706372,	2.89965933,	2.32073698,	2.54983095,	1.81254128,	2.76014464,	2.7371505	,	3.60486887,	2.889826	,	3.39215608,	1.0481819	,	1.60991228,	3.14313097,	2.2401569	,	2.84767378,	2.59749706,	2.94929937,	3.53003227,	2.40611054,	2.92908473,	2.18141278,	2.38092779,	3.21161722,
3.67791872,	2.4655558	,	3.37052415,	2.60195585,	2.67783946,	2.38701709,	3.20875816])	In	fact,	the	values	of	the	first	principal	component	are	computed	with	the	following,	so	we	can	compare	those	values	to	the	ones	that	we	calculated,	and	they	should	agree:	pca.transform(standardisedX)[:,	0]	array([-3.31675081,	-2.20946492,	-2.51674015,
-3.75706561,	-1.00890849,	-3.05025392,	-2.44908967,	-2.05943687,	-2.5108743	,	-2.75362819,	-3.47973668,	-1.7547529	,	-2.11346234,	-3.45815682,	-4.31278391,	-2.3051882	,	-2.17195527,	-1.89897118,	-3.54198508,	-2.0845222	,	-3.12440254,	-1.08657007,	-2.53522408,	-1.64498834,	-1.76157587,	-0.9900791	,	-1.77527763,	-1.23542396,
-2.18840633,	-2.25610898,	-2.50022003,	-2.67741105,	-1.62857912,	-1.90269086,	-1.41038853,	-1.90382623,	-1.38486223,	-1.12220741,	-1.5021945	,	-2.52980109,	-2.58809543,	-0.66848199,	-3.07080699,	-0.46220914,	-2.10135193,	-1.13616618,	-2.72660096,	-2.82133927,	-2.00985085,	-2.7074913	,	-3.21491747,	-2.85895983,	-3.50560436,
-2.22479138,	-2.14698782,	-2.46932948,	-2.74151791,	-2.17374092,	-3.13938015,	0.92858197,	1.54248014,	1.83624976,	-0.03060683,	-2.05026161,	0.60968083,	-0.90022784,	-2.24850719,	-0.18338403,	0.81280503,	-1.9756205	,	1.57221622,	-1.65768181,	0.72537239,	-2.56222717,	-1.83256757,	0.8679929	,	-0.3700144	,	1.45737704,	-1.26293085,
-0.37615037,	-0.7620639	,	-1.03457797,	0.49487676,	2.53897708,	-0.83532015,	-0.78790461,	0.80683216,	0.55804262,	1.11511104,	0.55572283,	1.34928528,	1.56448261,	1.93255561,	-0.74666594,	-0.95745536,	-2.54386518,	0.54395259,	-1.03104975,	-2.25190942,	-1.41021602,	-0.79771979,	0.54953173,	0.16117374,	0.65979494,	-0.39235441,
1.77249908,	0.36626736,	1.62067257,	-0.08253578,	-1.57827507,	-1.42056925,	0.27870275,	1.30314497,	0.45707187,	0.49418585,	-0.48207441,	0.25288888,	0.10722764,	2.4330126	,	0.55108954,	-0.73962193,	-1.33632173,	1.177087	,	0.46233501,	-0.97847408,	0.09680973,	-0.03848715,	1.5971585	,	0.47956492,	1.79283347,	1.32710166,
2.38450083,	2.9369401	,	2.14681113,	2.36986949,	3.06384157,	3.91575378,	3.93646339,	3.09427612,	2.37447163,	2.77881295,	2.28656128,	2.98563349,	2.3751947	,	2.20986553,	2.625621	,	4.28063878,	3.58264137,	2.80706372,	2.89965933,	2.32073698,	2.54983095,	1.81254128,	2.76014464,	2.7371505	,	3.60486887,	2.889826	,	3.39215608,
1.0481819	,	1.60991228,	3.14313097,	2.2401569	,	2.84767378,	2.59749706,	2.94929937,	3.53003227,	2.40611054,	2.92908473,	2.18141278,	2.38092779,	3.21161722,	3.67791872,	2.4655558	,	3.37052415,	2.60195585,	2.67783946,	2.38701709,	3.20875816])	We	see	that	they	do	agree.	The	first	principal	component	has	highest	(in	absolute	value)
loadings	for	V8	(-0.423),	V7	(-0.395),	V13	(-0.376),	V10	(-0.313),	V12	(-0.297),	V14	(-0.287),	V9	(0.299),	V3	(0.245),	and	V5	(0.239).	The	loadings	for	V8,	V7,	V13,	V10,	V12	and	V14	are	negative,	while	those	for	V9,	V3,	and	V5	are	positive.	Therefore,	an	interpretation	of	the	first	principal	component	is	that	it	represents	a	contrast	between	the
concentrations	of	V8,	V7,	V13,	V10,	V12,	and	V14,	and	the	concentrations	of	V9,	V3	and	V5.	Similarly,	we	can	obtain	the	loadings	for	the	second	principal	component	by	typing:	array([0.48365155,	0.22493093,	0.31606881,	-0.0105905	,	0.299634	,	0.06503951,	-0.00335981,	0.02877949,	0.03930172,	0.52999567,	-0.27923515,	-0.16449619,
0.36490283])	This	means	that	the	second	principal	component	is	a	linear	combination	of	the	variables:	0.484*Z2	+	0.225*Z3	+	0.316*Z4	-	0.011*Z5	+	0.300*Z6	+	0.065*Z7	-	0.003*Z8	+	0.029*Z9	+	0.039*Z10	+	0.530*Z11	-	0.279*Z12	-	0.164*Z13	+	0.365*Z14	where	Z1,	Z2,	Z3,	...,	Z14	are	the	standardised	versions	of	variables	V2,	V3,	...,	V14	that
each	have	mean	0	and	variance	1.	Note	that	the	square	of	the	loadings	sum	to	1,	as	above:	np.sum(pca.components_[1]**2)	The	second	principal	component	has	highest	loadings	for	V11	(0.530),	V2	(0.484),	V14	(0.365),	V4	(0.316),	V6	(0.300),	V12	(-0.279),	and	V3	(0.225).	The	loadings	for	V11,	V2,	V14,	V4,	V6	and	V3	are	positive,	while	the	loading	for
V12	is	negative.	Therefore,	an	interpretation	of	the	second	principal	component	is	that	it	represents	a	contrast	between	the	concentrations	of	V11,	V2,	V14,	V4,	V6	and	V3,	and	the	concentration	of	V12.	Note	that	the	loadings	for	V11	(0.530)	and	V2	(0.484)	are	the	largest,	so	the	contrast	is	mainly	between	the	concentrations	of	V11	and	V2,	and	the
concentration	of	V12.	The	values	of	the	principal	components	can	be	computed	by	the	transform()	(or	fit_transform())	method	of	the	PCA	class.	It	returns	a	matrix	with	the	principal	components,	where	the	first	column	in	the	matrix	contains	the	first	principal	component,	the	second	column	the	second	component,	and	so	on.	Thus,	in	our	example,
pca.transform(standardisedX)[:,	0]	contains	the	first	principal	component,	and	pca.transform(standardisedX)[:,	1]	contains	the	second	principal	component.	We	can	make	a	scatterplot	of	the	first	two	principal	components,	and	label	the	data	points	with	the	cultivar	that	the	wine	samples	come	from,	by	typing:	def	pca_scatter(pca,	standardised_values,
classifs):	foo	=	pca.transform(standardised_values)	bar	=	pd.DataFrame(zip(foo[:,	0],	foo[:,	1],	classifs),	columns=["PC1",	"PC2",	"Class"])	sns.lmplot("PC1",	"PC2",	bar,	hue="Class",	fit_reg=False)	pca_scatter(pca,	standardisedX,	y)	The	scatterplot	shows	the	first	principal	component	on	the	x-axis,	and	the	second	principal	component	on	the	y-axis.	We
can	see	from	the	scatterplot	that	wine	samples	of	cultivar	1	have	much	lower	values	of	the	first	principal	component	than	wine	samples	of	cultivar	3.	Therefore,	the	first	principal	component	separates	wine	samples	of	cultivars	1	from	those	of	cultivar	3.	We	can	also	see	that	wine	samples	of	cultivar	2	have	much	higher	values	of	the	second	principal
component	than	wine	samples	of	cultivars	1	and	3.	Therefore,	the	second	principal	component	separates	samples	of	cultivar	2	from	samples	of	cultivars	1	and	3.	Therefore,	the	first	two	principal	components	are	reasonably	useful	for	distinguishing	wine	samples	of	the	three	different	cultivars.	Above,	we	interpreted	the	first	principal	component	as	a
contrast	between	the	concentrations	of	V8,	V7,	V13,	V10,	V12,	and	V14,	and	the	concentrations	of	V9,	V3	and	V5.	We	can	check	whether	this	makes	sense	in	terms	of	the	concentrations	of	these	chemicals	in	the	different	cultivars,	by	printing	out	the	means	of	the	standardised	concentration	variables	in	each	cultivar,	using	the
printMeanAndSdByGroup()	function	(see	above):	printMeanAndSdByGroup(standardisedX,	y);	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V1	1	0.919195	-0.292342	0.325604	-0.737997	0.463226	0.873362	0.956884	-0.578985	0.540383	0.203401	0.458847	0.771351	1.174501	2	-0.891720	-0.362362	-0.444958	0.223137	-0.364567	-0.058067
0.051780	0.014569	0.069002	-0.852799	0.433611	0.245294	-0.724110	3	0.189159	0.895331	0.257945	0.577065	-0.030127	-0.987617	-1.252761	0.690119	-0.766287	1.011418	-1.205382	-1.310950	-0.372578	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V1	1	0.565989	0.612825	0.823302	0.758115	0.730892	0.538506	0.395674	0.559639	0.715905
0.531210	0.506699	0.500058	0.699428	2	0.659832	0.905196	1.144991	0.998777	1.168006	0.867674	0.703493	0.991797	1.047418	0.397269	0.884060	0.696425	0.497100	3	0.648130	0.966347	0.668036	0.670991	0.756649	0.565996	0.291583	0.989818	0.708814	0.989176	0.496834	0.380317	0.362688	Does	it	make	sense	that	the	first	principal
component	can	separate	cultivar	1	from	cultivar	3?	In	cultivar	1,	the	mean	values	of	V8	(0.954),	V7	(0.871),	V13	(0.769),	V10	(0.539),	V12	(0.458)	and	V14	(1.171)	are	very	high	compared	to	the	mean	values	of	V9	(-0.577),	V3	(-0.292)	and	V5	(-0.736).	In	cultivar	3,	the	mean	values	of	V8	(-1.249),	V7	(-0.985),	V13	(-1.307),	V10	(-0.764),	V12	(-1.202)	and
V14	(-0.372)	are	very	low	compared	to	the	mean	values	of	V9	(0.688),	V3	(0.893)	and	V5	(0.575).	Therefore,	it	does	make	sense	that	principal	component	1	is	a	contrast	between	the	concentrations	of	V8,	V7,	V13,	V10,	V12,	and	V14,	and	the	concentrations	of	V9,	V3	and	V5;	and	that	principal	component	1	can	separate	cultivar	1	from	cultivar	3.	Above,
we	intepreted	the	second	principal	component	as	a	contrast	between	the	concentrations	of	V11,	V2,	V14,	V4,	V6	and	V3,	and	the	concentration	of	V12.	In	the	light	of	the	mean	values	of	these	variables	in	the	different	cultivars,	does	it	make	sense	that	the	second	principal	component	can	separate	cultivar	2	from	cultivars	1	and	3?	In	cultivar	1,	the
mean	values	of	V11	(0.203),	V2	(0.917),	V14	(1.171),	V4	(0.325),	V6	(0.462)	and	V3	(-0.292)	are	not	very	different	from	the	mean	value	of	V12	(0.458).	In	cultivar	3,	the	mean	values	of	V11	(1.009),	V2	(0.189),	V14	(-0.372),	V4	(0.257),	V6	(-0.030)	and	V3	(0.893)	are	also	not	very	different	from	the	mean	value	of	V12	(-1.202).	In	contrast,	in	cultivar	2,
the	mean	values	of	V11	(-0.850),	V2	(-0.889),	V14	(-0.722),	V4	(-0.444),	V6	(-0.364)	and	V3	(-0.361)	are	much	less	than	the	mean	value	of	V12	(0.432).	Therefore,	it	makes	sense	that	principal	component	is	a	contrast	between	the	concentrations	of	V11,	V2,	V14,	V4,	V6	and	V3,	and	the	concentration	of	V12;	and	that	principal	component	2	can	separate
cultivar	2	from	cultivars	1	and	3.	The	purpose	of	principal	component	analysis	is	to	find	the	best	low-dimensional	representation	of	the	variation	in	a	multivariate	data	set.	For	example,	in	the	wine	data	set,	we	have	13	chemical	concentrations	describing	wine	samples	from	three	cultivars.	By	carrying	out	a	principal	component	analysis,	we	found	that
most	of	the	variation	in	the	chemical	concentrations	between	the	samples	can	be	captured	using	the	first	two	principal	components,	where	each	of	the	principal	components	is	a	particular	linear	combination	of	the	13	chemical	concentrations.	The	purpose	of	linear	discriminant	analysis	(LDA)	is	to	find	the	linear	combinations	of	the	original	variables
(the	13	chemical	concentrations	here)	that	gives	the	best	possible	separation	between	the	groups	(wine	cultivars	here)	in	our	data	set.	Linear	discriminant	analysis	is	also	known	as	canonical	discriminant	analysis,	or	simply	discriminant	analysis.	If	we	want	to	separate	the	wines	by	cultivar,	the	wines	come	from	three	different	cultivars,	so	the	number
of	groups	(G)	is	3,	and	the	number	of	variables	is	13	(13	chemicals’	concentrations;	p	=	13).	The	maximum	number	of	useful	discriminant	functions	that	can	separate	the	wines	by	cultivar	is	the	minimum	of	G-1	and	p,	and	so	in	this	case	it	is	the	minimum	of	2	and	13,	which	is	2.	Thus,	we	can	find	at	most	2	useful	discriminant	functions	to	separate	the
wines	by	cultivar,	using	the	13	chemical	concentration	variables.	You	can	carry	out	a	linear	discriminant	analysis	by	using	the	LinearDiscriminantAnalysis	class	model	from	the	module	sklearn.discriminant_analysis	and	using	its	method	fit()	to	fit	our	X,	y	data.	For	example,	to	carry	out	a	linear	discriminant	analysis	using	the	13	chemical
concentrations	in	the	wine	samples,	we	type:	lda	=	LinearDiscriminantAnalysis().fit(X,	y)	The	values	of	the	loadings	of	the	discriminant	functions	for	the	wine	data	are	stored	in	the	scalings_	member	of	the	lda	object	model.	For	a	pretty	print	we	can	type:	def	pretty_scalings(lda,	X,	out=False):	ret	=	pd.DataFrame(lda.scalings_,	index=X.columns,
columns=["LD"+str(i+1)	for	i	in	range(lda.scalings_.shape[1])])	if	out:	print("Coefficients	of	linear	discriminants:")	display(ret)	return	ret	pretty_scalings_	=	pretty_scalings(lda,	X,	out=True)	Coefficients	of	linear	discriminants:	LD1	LD2	V2	-0.403400	0.871793	V3	0.165255	0.305380	V4	-0.369075	2.345850	V5	0.154798	-0.146381	V6	-0.002163
-0.000463	V7	0.618052	-0.032213	V8	-1.661191	-0.491998	V9	-1.495818	-1.630954	V10	0.134093	-0.307088	V11	0.355056	0.253231	V12	-0.818036	-1.515634	V13	-1.157559	0.051184	V14	-0.002691	0.002853	This	means	that	the	first	discriminant	function	is	a	linear	combination	of	the	variables:	-0.403*V2	+	0.165*V3	-	0.369*V4	+	0.155*V5	-
0.002*V6	+	0.618*V7	-	1.661*V8	-	1.496*V9	+	0.134*V10	+	0.355*V11	-	0.818*V12	-	1.158*V13	-	0.003*V14	where	V2,	V3,	...,	V14	are	the	concentrations	of	the	14	chemicals	found	in	the	wine	samples.	For	convenience,	the	value	for	each	discriminant	function	(eg.	the	first	discriminant	function)	are	scaled	so	that	their	mean	value	is	zero	(see	below).
Note	that	these	loadings	are	calculated	so	that	the	within-group	variance	of	each	discriminant	function	for	each	group	(cultivar)	is	equal	to	1,	as	will	be	demonstrated	below.	As	mentioned	above,	these	scalings	are	stored	in	the	named	member	scalings_	of	the	object	variable	returned	by	LinearDiscriminantAnalysis().fit(X,	y).	This	element	contains	a
numpy	array,	in	which	the	first	column	contains	the	loadings	for	the	first	discriminant	function,	the	second	column	contains	the	loadings	for	the	second	discriminant	function	and	so	on.	For	example,	to	extract	the	loadings	for	the	first	discriminant	function,	we	can	type:	array([-0.40339978,	0.1652546	,	-0.36907526,	0.15479789,	-0.0021635	,
0.61805207,	-1.66119123,	-1.49581844,	0.13409263,	0.35505571,	-0.81803607,	-1.15755938,	-0.00269121])	Or	for	“prettier”	print,	use	the	dataframe	variable	created	above:	V2	-0.403400	V3	0.165255	V4	-0.369075	V5	0.154798	V6	-0.002163	V7	0.618052	V8	-1.661191	V9	-1.495818	V10	0.134093	V11	0.355056	V12	-0.818036	V13	-1.157559	V14
-0.002691	Name:	LD1,	dtype:	float64	To	calculate	the	values	of	the	first	discriminant	function,	we	can	define	our	own	function	calclda():	def	calclda(variables,	loadings):	#	find	the	number	of	samples	in	the	data	set	and	the	number	of	variables	numsamples,	numvariables	=	variables.shape	#	make	a	vector	to	store	the	discriminant	function	ld	=
np.zeros(numsamples)	#	calculate	the	value	of	the	discriminant	function	for	each	sample	for	i	in	range(numsamples):	valuei	=	0	for	j	in	range(numvariables):	valueij	=	variables.iloc[i,	j]	loadingj	=	loadings[j]	valuei	=	valuei	+	(valueij	*	loadingj)	ld[i]	=	valuei	#	standardise	the	discriminant	function	so	that	its	mean	value	is	0:	ld	=	scale(ld,
with_std=False)	return	ld	The	function	calclda()	simply	calculates	the	value	of	a	discriminant	function	for	each	sample	in	the	data	set,	for	example,	for	the	first	disriminant	function,	for	each	sample	we	calculate	the	value	using	the	equation:	-0.403*V2	-	0.165*V3	-	0.369*V4	+	0.155*V5	-	0.002*V6	+	0.618*V7	-	1.661*V8	-	1.496*V9	+	0.134*V10	+
0.355*V11	-	0.818*V12	-	1.158*V13	-	0.003*V14	Furthermore,	the	scale()	command	is	used	within	the	calclda()	function	in	order	to	standardise	the	value	of	a	discriminant	function	(eg.	the	first	discriminant	function)	so	that	its	mean	value	(over	all	the	wine	samples)	is	0.	We	can	use	the	function	calclda()	to	calculate	the	values	of	the	first	discriminant
function	for	each	sample	in	our	wine	data:	calclda(X,	lda.scalings_[:,	0])	array([-4.70024401,	-4.30195811,	-3.42071952,	-4.20575366,	-1.50998168,	-4.51868934,	-4.52737794,	-4.14834781,	-3.86082876,	-3.36662444,	-4.80587907,	-3.42807646,	-3.66610246,	-5.58824635,	-5.50131449,	-3.18475189,	-3.28936988,	-2.99809262,	-5.24640372,
-3.13653106,	-3.57747791,	-1.69077135,	-4.83515033,	-3.09588961,	-3.32164716,	-2.14482223,	-3.9824285	,	-2.68591432,	-3.56309464,	-3.17301573,	-2.99626797,	-3.56866244,	-3.38506383,	-3.5275375	,	-2.85190852,	-2.79411996,	-2.75808511,	-2.17734477,	-3.02926382,	-3.27105228,	-2.92065533,	-2.23721062,	-4.69972568,	-1.23036133,
-2.58203904,	-2.58312049,	-3.88887889,	-3.44975356,	-2.34223331,	-3.52062596,	-3.21840912,	-4.38214896,	-4.36311727,	-3.51917293,	-3.12277475,	-1.8024054	,	-2.87378754,	-3.61690518,	-3.73868551,	1.58618749,	0.79967216,	2.38015446,	-0.45917726,	-0.50726885,	0.39398359,	-0.92256616,	-1.95549377,	-0.34732815,	0.20371212,
-0.24831914,	1.17987999,	-1.07718925,	0.64100179,	-1.74684421,	-0.34721117,	1.14274222,	0.18665882,	0.900525	,	-0.70709551,	-0.59562833,	-0.55761818,	-1.80430417,	0.23077079,	2.03482711,	-0.62113021,	-1.03372742,	0.76598781,	0.35042568,	0.15324508,	-0.14962842,	0.48079504,	1.39689016,	0.91972331,	-0.59102937,	0.49411386,
-1.62614426,	2.00044562,	-1.00534818,	-2.07121314,	-1.6381589	,	-1.0589434	,	0.02594549,	-0.21887407,	1.3643764	,	-1.12901245,	-0.21263094,	-0.77946884,	0.61546732,	0.22550192,	-2.03869851,	0.79274716,	0.30229545,	-0.50664882,	0.99837397,	-0.21954922,	-0.37131517,	0.05545894,	-0.09137874,	1.79755252,	-0.17405009,	-1.17870281,
-3.2105439	,	0.62605202,	0.03366613,	-0.6993008	,	-0.72061079,	-0.51933512,	1.17030045,	0.10824791,	1.12319783,	2.24632419,	3.28527755,	4.07236441,	3.86691235,	3.45088333,	3.71583899,	3.9222051	,	4.8516102	,	3.54993389,	3.76889174,	2.6694225	,	2.32491492,	3.17712883,	2.88964418,	3.78325562,	3.04411324,	4.70697017,
4.85021393,	4.98359184,	4.86968293,	4.5986919	,	5.67447884,	5.32986123,	5.03401031,	4.52080087,	5.0978371	,	5.04368277,	4.86980829,	5.61316558,	5.67046737,	5.37413513,	3.09975377,	3.35888137,	3.04007194,	4.94861303,	4.54504458,	5.27255844,	5.13016117,	4.30468082,	5.08336782,	4.06743571,	5.74212961,	4.4820514	,	4.29150758,
4.50329623,	5.04747033,	4.27615505,	5.5380861])	In	fact,	the	values	of	the	first	linear	discriminant	function	can	be	calculated	using	the	transform(X)	or	fit_transform(X,	y)	methods	of	the	LDA	object,	so	we	can	compare	those	to	the	ones	that	we	calculated,	and	they	should	agree:	#	Try	either,	they	produce	the	same	result,	use	help()	for	more	info	#
lda.transform(X)[:,	0]	lda.fit_transform(X,	y)[:,	0]	array([-4.70024401,	-4.30195811,	-3.42071952,	-4.20575366,	-1.50998168,	-4.51868934,	-4.52737794,	-4.14834781,	-3.86082876,	-3.36662444,	-4.80587907,	-3.42807646,	-3.66610246,	-5.58824635,	-5.50131449,	-3.18475189,	-3.28936988,	-2.99809262,	-5.24640372,	-3.13653106,	-3.57747791,
-1.69077135,	-4.83515033,	-3.09588961,	-3.32164716,	-2.14482223,	-3.9824285	,	-2.68591432,	-3.56309464,	-3.17301573,	-2.99626797,	-3.56866244,	-3.38506383,	-3.5275375	,	-2.85190852,	-2.79411996,	-2.75808511,	-2.17734477,	-3.02926382,	-3.27105228,	-2.92065533,	-2.23721062,	-4.69972568,	-1.23036133,	-2.58203904,	-2.58312049,
-3.88887889,	-3.44975356,	-2.34223331,	-3.52062596,	-3.21840912,	-4.38214896,	-4.36311727,	-3.51917293,	-3.12277475,	-1.8024054	,	-2.87378754,	-3.61690518,	-3.73868551,	1.58618749,	0.79967216,	2.38015446,	-0.45917726,	-0.50726885,	0.39398359,	-0.92256616,	-1.95549377,	-0.34732815,	0.20371212,	-0.24831914,	1.17987999,
-1.07718925,	0.64100179,	-1.74684421,	-0.34721117,	1.14274222,	0.18665882,	0.900525	,	-0.70709551,	-0.59562833,	-0.55761818,	-1.80430417,	0.23077079,	2.03482711,	-0.62113021,	-1.03372742,	0.76598781,	0.35042568,	0.15324508,	-0.14962842,	0.48079504,	1.39689016,	0.91972331,	-0.59102937,	0.49411386,	-1.62614426,	2.00044562,
-1.00534818,	-2.07121314,	-1.6381589	,	-1.0589434	,	0.02594549,	-0.21887407,	1.3643764	,	-1.12901245,	-0.21263094,	-0.77946884,	0.61546732,	0.22550192,	-2.03869851,	0.79274716,	0.30229545,	-0.50664882,	0.99837397,	-0.21954922,	-0.37131517,	0.05545894,	-0.09137874,	1.79755252,	-0.17405009,	-1.17870281,	-3.2105439	,	0.62605202,
0.03366613,	-0.6993008	,	-0.72061079,	-0.51933512,	1.17030045,	0.10824791,	1.12319783,	2.24632419,	3.28527755,	4.07236441,	3.86691235,	3.45088333,	3.71583899,	3.9222051	,	4.8516102	,	3.54993389,	3.76889174,	2.6694225	,	2.32491492,	3.17712883,	2.88964418,	3.78325562,	3.04411324,	4.70697017,	4.85021393,	4.98359184,
4.86968293,	4.5986919	,	5.67447884,	5.32986123,	5.03401031,	4.52080087,	5.0978371	,	5.04368277,	4.86980829,	5.61316558,	5.67046737,	5.37413513,	3.09975377,	3.35888137,	3.04007194,	4.94861303,	4.54504458,	5.27255844,	5.13016117,	4.30468082,	5.08336782,	4.06743571,	5.74212961,	4.4820514	,	4.29150758,	4.50329623,	5.04747033,
4.27615505,	5.5380861])	We	see	that	they	do	agree.	It	doesn’t	matter	whether	the	input	variables	for	linear	discriminant	analysis	are	standardised	or	not,	unlike	for	principal	components	analysis	in	which	it	is	often	necessary	to	standardise	the	input	variables.	However,	using	standardised	variables	in	linear	discriminant	analysis	makes	it	easier	to
interpret	the	loadings	in	a	linear	discriminant	function.	In	linear	discriminant	analysis,	the	standardised	version	of	an	input	variable	is	defined	so	that	it	has	mean	zero	and	within-groups	variance	of	1.	Thus,	we	can	calculate	the	“group-standardised”	variable	by	subtracting	the	mean	from	each	value	of	the	variable,	and	dividing	by	the	within-groups
standard	deviation.	To	calculate	the	group-standardised	version	of	a	set	of	variables,	we	can	use	the	function	groupStandardise()	below:	def	groupStandardise(variables,	groupvariable):	#	find	the	number	of	samples	in	the	data	set	and	the	number	of	variables	numsamples,	numvariables	=	variables.shape	#	find	the	variable	names	variablenames	=
variables.columns	#	calculate	the	group-standardised	version	of	each	variable	variables_new	=	pd.DataFrame()	for	i	in	range(numvariables):	variable_name	=	variablenames[i]	variablei	=	variables[variable_name]	variablei_Vw	=	calcWithinGroupsVariance(variablei,	groupvariable)	variablei_mean	=	np.mean(variablei)	variablei_new	=	(variablei	-
variablei_mean)/(np.sqrt(variablei_Vw))	variables_new[variable_name]	=	variablei_new	return	variables_new	For	example,	we	can	use	the	groupStandardise()	function	to	calculate	the	group-standardised	versions	of	the	chemical	concentrations	in	wine	samples:	groupstandardisedX	=	groupStandardise(X,	y)	We	can	then	use	the
LinearDiscriminantAnalysis().fit()	method	to	perform	linear	disriminant	analysis	on	the	group-standardised	variables:	lda2	=	LinearDiscriminantAnalysis().fit(groupstandardisedX,	y)	pretty_scalings(lda2,	groupstandardisedX)	LD1	LD2	V2	-0.206505	0.446280	V3	0.155686	0.287697	V4	-0.094869	0.602989	V5	0.438021	-0.414204	V6	-0.029079
-0.006220	V7	0.270302	-0.014088	V8	-0.870673	-0.257869	V9	-0.163255	-0.178004	V10	0.066531	-0.152364	V11	0.536701	0.382783	V12	-0.128011	-0.237175	V13	-0.464149	0.020523	V14	-0.463854	0.491738	It	makes	sense	to	interpret	the	loadings	calculated	using	the	group-standardised	variables	rather	than	the	loadings	for	the	original
(unstandardised)	variables.	In	the	first	discriminant	function	calculated	for	the	group-standardised	variables,	the	largest	loadings	(in	absolute)	value	are	given	to	V8	(-0.871),	V11	(0.537),	V13	(-0.464),	V14	(-0.464),	and	V5	(0.438).	The	loadings	for	V8,	V13	and	V14	are	negative,	while	those	for	V11	and	V5	are	positive.	Therefore,	the	discriminant

function	seems	to	represent	a	contrast	between	the	concentrations	of	V8,	V13	and	V14,	and	the	concentrations	of	V11	and	V5.	We	saw	above	that	the	individual	variables	which	gave	the	greatest	separations	between	the	groups	were	V8	(separation	233.93),	V14	(207.92),	V13	(189.97),	V2	(135.08)	and	V11	(120.66).	These	were	mostly	the	same
variables	that	had	the	largest	loadings	in	the	linear	discriminant	function	(loading	for	V8:	-0.871,	for	V14:	-0.464,	for	V13:	-0.464,	for	V11:	0.537).	We	found	above	that	variables	V8	and	V11	have	a	negative	between-groups	covariance	(-60.41)	and	a	positive	within-groups	covariance	(0.29).	When	the	between-groups	covariance	and	within-groups
covariance	for	two	variables	have	opposite	signs,	it	indicates	that	a	better	separation	between	groups	can	be	obtained	by	using	a	linear	combination	of	those	two	variables	than	by	using	either	variable	on	its	own.	Thus,	given	that	the	two	variables	V8	and	V11	have	between-groups	and	within-groups	covariances	of	opposite	signs,	and	that	these	are
two	of	the	variables	that	gave	the	greatest	separations	between	groups	when	used	individually,	it	is	not	surprising	that	these	are	the	two	variables	that	have	the	largest	loadings	in	the	first	discriminant	function.	Note	that	although	the	loadings	for	the	group-standardised	variables	are	easier	to	interpret	than	the	loadings	for	the	unstandardised
variables,	the	values	of	the	discriminant	function	are	the	same	regardless	of	whether	we	standardise	the	input	variables	or	not.	For	example,	for	wine	data,	we	can	calculate	the	value	of	the	first	discriminant	function	calculated	using	the	unstandardised	and	group-standardised	variables	by	typing:	lda.fit_transform(X,	y)[:,	0]	array([-4.70024401,
-4.30195811,	-3.42071952,	-4.20575366,	-1.50998168,	-4.51868934,	-4.52737794,	-4.14834781,	-3.86082876,	-3.36662444,	-4.80587907,	-3.42807646,	-3.66610246,	-5.58824635,	-5.50131449,	-3.18475189,	-3.28936988,	-2.99809262,	-5.24640372,	-3.13653106,	-3.57747791,	-1.69077135,	-4.83515033,	-3.09588961,	-3.32164716,	-2.14482223,
-3.9824285	,	-2.68591432,	-3.56309464,	-3.17301573,	-2.99626797,	-3.56866244,	-3.38506383,	-3.5275375	,	-2.85190852,	-2.79411996,	-2.75808511,	-2.17734477,	-3.02926382,	-3.27105228,	-2.92065533,	-2.23721062,	-4.69972568,	-1.23036133,	-2.58203904,	-2.58312049,	-3.88887889,	-3.44975356,	-2.34223331,	-3.52062596,	-3.21840912,
-4.38214896,	-4.36311727,	-3.51917293,	-3.12277475,	-1.8024054	,	-2.87378754,	-3.61690518,	-3.73868551,	1.58618749,	0.79967216,	2.38015446,	-0.45917726,	-0.50726885,	0.39398359,	-0.92256616,	-1.95549377,	-0.34732815,	0.20371212,	-0.24831914,	1.17987999,	-1.07718925,	0.64100179,	-1.74684421,	-0.34721117,	1.14274222,	0.18665882,
0.900525	,	-0.70709551,	-0.59562833,	-0.55761818,	-1.80430417,	0.23077079,	2.03482711,	-0.62113021,	-1.03372742,	0.76598781,	0.35042568,	0.15324508,	-0.14962842,	0.48079504,	1.39689016,	0.91972331,	-0.59102937,	0.49411386,	-1.62614426,	2.00044562,	-1.00534818,	-2.07121314,	-1.6381589	,	-1.0589434	,	0.02594549,	-0.21887407,
1.3643764	,	-1.12901245,	-0.21263094,	-0.77946884,	0.61546732,	0.22550192,	-2.03869851,	0.79274716,	0.30229545,	-0.50664882,	0.99837397,	-0.21954922,	-0.37131517,	0.05545894,	-0.09137874,	1.79755252,	-0.17405009,	-1.17870281,	-3.2105439	,	0.62605202,	0.03366613,	-0.6993008	,	-0.72061079,	-0.51933512,	1.17030045,	0.10824791,
1.12319783,	2.24632419,	3.28527755,	4.07236441,	3.86691235,	3.45088333,	3.71583899,	3.9222051	,	4.8516102	,	3.54993389,	3.76889174,	2.6694225	,	2.32491492,	3.17712883,	2.88964418,	3.78325562,	3.04411324,	4.70697017,	4.85021393,	4.98359184,	4.86968293,	4.5986919	,	5.67447884,	5.32986123,	5.03401031,	4.52080087,	5.0978371	,
5.04368277,	4.86980829,	5.61316558,	5.67046737,	5.37413513,	3.09975377,	3.35888137,	3.04007194,	4.94861303,	4.54504458,	5.27255844,	5.13016117,	4.30468082,	5.08336782,	4.06743571,	5.74212961,	4.4820514	,	4.29150758,	4.50329623,	5.04747033,	4.27615505,	5.5380861])	lda2.fit_transform(groupstandardisedX,	y)[:,	0]
array([-4.70024401,	-4.30195811,	-3.42071952,	-4.20575366,	-1.50998168,	-4.51868934,	-4.52737794,	-4.14834781,	-3.86082876,	-3.36662444,	-4.80587907,	-3.42807646,	-3.66610246,	-5.58824635,	-5.50131449,	-3.18475189,	-3.28936988,	-2.99809262,	-5.24640372,	-3.13653106,	-3.57747791,	-1.69077135,	-4.83515033,	-3.09588961,	-3.32164716,
-2.14482223,	-3.9824285	,	-2.68591432,	-3.56309464,	-3.17301573,	-2.99626797,	-3.56866244,	-3.38506383,	-3.5275375	,	-2.85190852,	-2.79411996,	-2.75808511,	-2.17734477,	-3.02926382,	-3.27105228,	-2.92065533,	-2.23721062,	-4.69972568,	-1.23036133,	-2.58203904,	-2.58312049,	-3.88887889,	-3.44975356,	-2.34223331,	-3.52062596,
-3.21840912,	-4.38214896,	-4.36311727,	-3.51917293,	-3.12277475,	-1.8024054	,	-2.87378754,	-3.61690518,	-3.73868551,	1.58618749,	0.79967216,	2.38015446,	-0.45917726,	-0.50726885,	0.39398359,	-0.92256616,	-1.95549377,	-0.34732815,	0.20371212,	-0.24831914,	1.17987999,	-1.07718925,	0.64100179,	-1.74684421,	-0.34721117,	1.14274222,
0.18665882,	0.900525	,	-0.70709551,	-0.59562833,	-0.55761818,	-1.80430417,	0.23077079,	2.03482711,	-0.62113021,	-1.03372742,	0.76598781,	0.35042568,	0.15324508,	-0.14962842,	0.48079504,	1.39689016,	0.91972331,	-0.59102937,	0.49411386,	-1.62614426,	2.00044562,	-1.00534818,	-2.07121314,	-1.6381589	,	-1.0589434	,	0.02594549,
-0.21887407,	1.3643764	,	-1.12901245,	-0.21263094,	-0.77946884,	0.61546732,	0.22550192,	-2.03869851,	0.79274716,	0.30229545,	-0.50664882,	0.99837397,	-0.21954922,	-0.37131517,	0.05545894,	-0.09137874,	1.79755252,	-0.17405009,	-1.17870281,	-3.2105439	,	0.62605202,	0.03366613,	-0.6993008	,	-0.72061079,	-0.51933512,	1.17030045,
0.10824791,	1.12319783,	2.24632419,	3.28527755,	4.07236441,	3.86691235,	3.45088333,	3.71583899,	3.9222051	,	4.8516102	,	3.54993389,	3.76889174,	2.6694225	,	2.32491492,	3.17712883,	2.88964418,	3.78325562,	3.04411324,	4.70697017,	4.85021393,	4.98359184,	4.86968293,	4.5986919	,	5.67447884,	5.32986123,	5.03401031,	4.52080087,
5.0978371	,	5.04368277,	4.86980829,	5.61316558,	5.67046737,	5.37413513,	3.09975377,	3.35888137,	3.04007194,	4.94861303,	4.54504458,	5.27255844,	5.13016117,	4.30468082,	5.08336782,	4.06743571,	5.74212961,	4.4820514	,	4.29150758,	4.50329623,	5.04747033,	4.27615505,	5.5380861])	We	can	see	that	although	the	loadings	are	different
for	the	first	discriminant	functions	calculated	using	unstandardised	and	group-standardised	data,	the	actual	values	of	the	first	discriminant	function	are	the	same.	To	calculate	the	separation	achieved	by	each	discriminant	function,	we	first	need	to	calculate	the	value	of	each	discriminant	function,	by	substituting	the	values	of	the	variables	into	the
linear	combination	for	the	discriminant	function	(eg.	-0.403*V2	-	0.165*V3	-	0.369*V4	+	0.155*V5	-	0.002*V6	+	0.618*V7	-	1.661*V8	-	1.496*V9	+	0.134*V10	+	0.355*V11	-	0.818*V12	-	1.158*V13	-	0.003*V14	for	the	first	discriminant	function),	and	then	scaling	the	values	of	the	discriminant	function	so	that	their	mean	is	zero.	As	mentioned	above,	we
can	do	this	using	the	rpredict()	function	which	simulates	the	output	of	the	predict()	function	in	R.	For	example,	to	calculate	the	value	of	the	discriminant	functions	for	the	wine	data,	we	type:	def	rpredict(lda,	X,	y,	out=False):	ret	=	{"class":	lda.predict(X),	"posterior":	pd.DataFrame(lda.predict_proba(X),	columns=lda.classes_)}	ret["x"]	=
pd.DataFrame(lda.fit_transform(X,	y))	ret["x"].columns	=	["LD"+str(i+1)	for	i	in	range(ret["x"].shape[1])]	if	out:	print("class")	print(ret["class"])	print()	print("posterior")	print(ret["posterior"])	print()	print("x")	print(ret["x"])	return	ret	lda_values	=	rpredict(lda,	standardisedX,	y,	True)	class	['2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'
'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'3'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'2'	'3'	'3'	'3'	'3'	'2'	'2'	'2'	'2'	'2'	'2'
'2'	'2'	'2'	'2'	'3'	'2'	'3'	'3'	'3'	'3'	'3'	'3'	'3'	'2'	'2'	'2'	'3'	'2'	'3'	'3'	'2'	'2'	'2'	'2'	'3'	'2'	'3'	'3'	'3'	'3'	'2'	'2'	'3'	'3'	'3'	'3'	'2'	'3']	posterior	1	2	3	0	1.344367e-22	0.999236	0.000764	1	4.489007e-27	0.983392	0.016608	2	2.228888e-24	0.791616	0.208384	3	1.026755e-24	0.500161	0.499839	4	6.371860e-23	0.790657	0.209343	5	1.552082e-24	0.981986	0.018014	6
3.354960e-23	0.951823	0.048177	7	3.417899e-22	0.925154	0.074846	8	4.041139e-26	0.978998	0.021002	9	3.718868e-26	0.619841	0.380159	168	7.463695e-30	0.500000	0.500000	169	1.389203e-29	0.499927	0.500073	170	1.356187e-33	0.500000	0.500000	171	1.007615e-33	0.500000	0.500000	172	1.524219e-30	0.500000	0.500000	173
1.317492e-30	0.500000	0.500000	174	2.664128e-32	0.500000	0.500000	175	2.873436e-34	0.500000	0.500000	176	1.479166e-32	0.500000	0.500000	177	1.209888e-28	0.500000	0.500000	[178	rows	x	3	columns]	x	LD1	LD2	0	-4.700244	1.979138	1	-4.301958	1.170413	2	-3.420720	1.429101	3	-4.205754	4.002871	4	-1.509982	0.451224	5	-4.518689
3.213138	6	-4.527378	3.269122	7	-4.148348	3.104118	8	-3.860829	1.953383	9	-3.366624	1.678643	168	4.304681	2.391125	169	5.083368	3.157667	170	4.067436	0.318922	171	5.742130	1.467082	172	4.482051	3.307084	173	4.291508	3.390332	174	4.503296	2.083546	175	5.047470	3.196231	176	4.276155	2.431388	177	5.538086	3.042057
[178	rows	x	2	columns]	The	returned	variable	has	a	named	element	x	which	is	a	matrix	containing	the	linear	discriminant	functions:	the	first	column	of	x	contains	the	first	discriminant	function,	the	second	column	of	x	contains	the	second	discriminant	function,	and	so	on	(if	there	are	more	discriminant	functions).	We	can	therefore	calculate	the
separations	achieved	by	the	two	linear	discriminant	functions	for	the	wine	data	by	using	the	calcSeparations()	function	(see	above),	which	calculates	the	separation	as	the	ratio	of	the	between-groups	variance	to	the	within-groups	variance:	calcSeparations(lda_values["x"],	y)	variable	LD1	Vw=	1.0	Vb=	794.652200566	separation=	794.652200566
variable	LD2	Vw=	1.0	Vb=	361.241041493	separation=	361.241041493	As	mentioned	above,	the	loadings	for	each	discriminant	function	are	calculated	in	such	a	way	that	the	within-group	variance	(Vw)	for	each	group	(wine	cultivar	here)	is	equal	to	1,	as	we	see	in	the	output	from	calcSeparations()	above.	The	output	from	calcSeparations()	tells	us
that	the	separation	achieved	by	the	first	(best)	discriminant	function	is	794.7,	and	the	separation	achieved	by	the	second	(second	best)	discriminant	function	is	361.2.	Therefore,	the	total	separation	is	the	sum	of	these,	which	is	(794.652200566216+361.241041493455=1155.893)	1155.89,	rounded	to	two	decimal	places.	Therefore,	the	percentage
separation	achieved	by	the	first	discriminant	function	is	(794.652200566216*100/1155.893=)	68.75%,	and	the	percentage	separation	achieved	by	the	second	discriminant	function	is	(361.241041493455*100/1155.893=)	31.25%.	The	proportion	of	trace	(as	reported	in	R	by	the	lda()	model)	is	the	percentage	separation	achieved	by	each	discriminant
function.	For	example,	for	the	wine	data	we	get	the	same	values	as	just	calculated	(68.75%	and	31.25%).	Note	that	in	sklearn	the	proportion	of	trace	is	reported	as	explained_variance_ratio_	in	a	LinearDiscriminantAnalysis	model	and	is	computed	only	for	an	“eigen”	solver,	while	so	far	we	have	been	using	the	default	one,	which	is	“svd”	(Singular	Value
Decomposition):	def	proportion_of_trace(lda):	ret	=	pd.DataFrame([round(i,	4)	for	i	in	lda.explained_variance_ratio_	if	round(i,	4)	>	0],	columns=["ExplainedVariance"])	ret.index	=	["LD"+str(i+1)	for	i	in	range(ret.shape[0])]	ret	=	ret.transpose()	print("Proportion	of	trace:")	print(ret.to_string(index=False))	return	ret
proportion_of_trace(LinearDiscriminantAnalysis(solver="eigen").fit(X,	y));	Proportion	of	trace:	LD1	LD2	0.6875	0.3125	Therefore,	the	first	discriminant	function	does	achieve	a	good	separation	between	the	three	groups	(three	cultivars),	but	the	second	discriminant	function	does	improve	the	separation	of	the	groups	by	quite	a	large	amount,	so	is	it
worth	using	the	second	discriminant	function	as	well.	Therefore,	to	achieve	a	good	separation	of	the	groups	(cultivars),	it	is	necessary	to	use	both	of	the	first	two	discriminant	functions.	We	found	above	that	the	largest	separation	achieved	for	any	of	the	individual	variables	(individual	chemical	concentrations)	was	233.9	for	V8,	which	is	quite	a	lot	less
than	794.7,	the	separation	achieved	by	the	first	discriminant	function.	Therefore,	the	effect	of	using	more	than	one	variable	to	calculate	the	discriminant	function	is	that	we	can	find	a	discriminant	function	that	achieves	a	far	greater	separation	between	groups	than	achieved	by	any	one	variable	alone.	A	nice	way	of	displaying	the	results	of	a	linear
discriminant	analysis	(LDA)	is	to	make	a	stacked	histogram	of	the	values	of	the	discriminant	function	for	the	samples	from	different	groups	(different	wine	cultivars	in	our	example).	We	can	do	this	using	the	ldahist()	function	defined	below.	def	ldahist(data,	g,	sep=False):	xmin	=	np.trunc(np.min(data))	-	1	xmax	=	np.trunc(np.max(data))	+	1	ncol	=
len(set(g))	binwidth	=	0.5	bins=np.arange(xmin,	xmax	+	binwidth,	binwidth)	if	sep:	fig,	axl	=	plt.subplots(ncol,	1,	sharey=True,	sharex=True)	else:	fig,	axl	=	plt.subplots(1,	1,	sharey=True,	sharex=True)	axl	=	[axl]*ncol	for	ax,	(group,	gdata)	in	zip(axl,	data.groupby(g)):	sns.distplot(gdata.values,	bins,	ax=ax,	label="group	"+str(group))
ax.set_xlim([xmin,	xmax])	if	sep:	ax.set_xlabel("group"+str(group))	else:	ax.legend(loc='center	left',	bbox_to_anchor=(1,	0.5))	plt.tight_layout()	For	example,	to	make	a	stacked	histogram	of	the	first	discriminant	function’s	values	for	wine	samples	of	the	three	different	wine	cultivars,	we	type:	ldahist(lda_values["x"].LD1,	y)	We	can	see	from	the
histogram	that	cultivars	1	and	3	are	well	separated	by	the	first	discriminant	function,	since	the	values	for	the	first	cultivar	are	between	-6	and	-1,	while	the	values	for	cultivar	3	are	between	2	and	6,	and	so	there	is	no	overlap	in	values.	However,	the	separation	achieved	by	the	linear	discriminant	function	on	the	training	set	may	be	an	overestimate.	To
get	a	more	accurate	idea	of	how	well	the	first	discriminant	function	separates	the	groups,	we	would	need	to	see	a	stacked	histogram	of	the	values	for	the	three	cultivars	using	some	unseen	“test	set”,	that	is,	using	a	set	of	data	that	was	not	used	to	calculate	the	linear	discriminant	function.	We	see	that	the	first	discriminant	function	separates	cultivars
1	and	3	very	well,	but	does	not	separate	cultivars	1	and	2,	or	cultivars	2	and	3,	so	well.	We	therefore	investigate	whether	the	second	discriminant	function	separates	those	cultivars,	by	making	a	stacked	histogram	of	the	second	discriminant	function’s	values:	ldahist(lda_values["x"].LD2,	y)	We	see	that	the	second	discriminant	function	separates
cultivars	1	and	2	quite	well,	although	there	is	a	little	overlap	in	their	values.	Furthermore,	the	second	discriminant	function	also	separates	cultivars	2	and	3	quite	well,	although	again	there	is	a	little	overlap	in	their	values	so	it	is	not	perfect.	Thus,	we	see	that	two	discriminant	functions	are	necessary	to	separate	the	cultivars,	as	was	discussed	above
(see	the	discussion	of	percentage	separation	above).	We	can	obtain	a	scatterplot	of	the	best	two	discriminant	functions,	with	the	data	points	labelled	by	cultivar,	by	typing:	sns.lmplot("LD1",	"LD2",	lda_values["x"].join(y),	hue="V1",	fit_reg=False);	From	the	scatterplot	of	the	first	two	discriminant	functions,	we	can	see	that	the	wines	from	the	three
cultivars	are	well	separated	in	the	scatterplot.	The	first	discriminant	function	(x-axis)	separates	cultivars	1	and	3	very	well,	but	doesn’t	not	perfectly	separate	cultivars	1	and	3,	or	cultivars	2	and	3.	The	second	discriminant	function	(y-axis)	achieves	a	fairly	good	separation	of	cultivars	1	and	3,	and	cultivars	2	and	3,	although	it	is	not	totally	perfect.	To
achieve	a	very	good	separation	of	the	three	cultivars,	it	would	be	best	to	use	both	the	first	and	second	discriminant	functions	together,	since	the	first	discriminant	function	can	separate	cultivars	1	and	3	very	well,	and	the	second	discriminant	function	can	separate	cultivars	1	and	2,	and	cultivars	2	and	3,	reasonably	well.	We	can	calculate	the	mean
values	of	the	discriminant	functions	for	each	of	the	three	cultivars	using	the	printMeanAndSdByGroup()	function	(see	above):	printMeanAndSdByGroup(lda_values["x"],	y);	LD1	LD2	V1	1	-3.422489	1.691674	2	-0.079726	-2.472656	3	4.324737	1.578120	LD1	LD2	V1	1	0.931467	1.008978	2	1.076271	0.990268	3	0.930571	0.971586	We	find	that	the
mean	value	of	the	first	discriminant	function	is	-3.42248851	for	cultivar	1,	-0.07972623	for	cultivar	2,	and	4.32473717	for	cultivar	3.	The	mid-way	point	between	the	mean	values	for	cultivars	1	and	2	is	(-3.42248851-0.07972623)/2=-1.751107,	and	the	mid-way	point	between	the	mean	values	for	cultivars	2	and	3	is	(-0.07972623+4.32473717)/2	=
2.122505.	Therefore,	we	can	use	the	following	allocation	rule:	if	the	first	discriminant	function	is	-1.751107	and	2.122505,	predict	the	sample	to	be	from	cultivar	3	We	can	examine	the	accuracy	of	this	allocation	rule	by	using	the	calcAllocationRuleAccuracy()	function	below:	def	calcAllocationRuleAccuracy(ldavalue,	groupvariable,	cutoffpoints):	#	find
out	how	many	values	the	group	variable	can	take	levels	=	sorted(set((groupvariable)))	numlevels	=	len(levels)	confusion_matrix	=	[]	#	calculate	the	number	of	true	positives	and	false	negatives	for	each	group	for	i,	leveli	in	enumerate(levels):	levelidata	=	ldavalue[groupvariable==leveli]	row	=	[]	#	see	how	many	of	the	samples	from	this	group	are
classified	in	each	group	for	j,	levelj	in	enumerate(levels):	if	j	==	0:	cutoff1	=	cutoffpoints[0]	cutoff2	=	"NA"	results	=	(levelidata	cutoff1).value_counts()	else:	cutoff1	=	cutoffpoints[j-1]	cutoff2	=	cutoffpoints[j]	results	=	((levelidata	>	cutoff1)	&	(levelidata	cutoff:	return	level	return	levels[0]	y_pred	=	lda_values["x"].iloc[:,	0].apply(lda_classify,	args=
(lda.classes_,	[-1.751107,	2.122505],)).values	y_true	=	y	#	from	def	plot_confusion_matrix(cm,	target_names,	title='Confusion	matrix',	cmap=plt.cm.Blues):	plt.imshow(cm,	interpolation='nearest',	cmap=cmap)	plt.title(title)	plt.colorbar()	tick_marks	=	np.arange(len(target_names))	plt.xticks(tick_marks,	target_names,	rotation=45)
plt.yticks(tick_marks,	target_names)	plt.tight_layout()	plt.ylabel('True	label')	plt.xlabel('Predicted	label')	print(metrics.classification_report(y_true,	y_pred))	cm	=	metrics.confusion_matrix(y_true,	y_pred)	webprint_confusion_matrix(cm,	lda.classes_)	cm_normalized	=	cm.astype('float')	/	cm.sum(axis=1)[:,	np.newaxis]
plot_confusion_matrix(cm_normalized,	lda.classes_,	title='Normalized	confusion	matrix')	precision	recall	f1-score	support	1	0.92	0.95	0.93	59	2	0.96	0.92	0.94	71	3	0.98	1.00	0.99	48	avg	/	total	0.95	0.95	0.95	178	Allocated	to	group	1	Allocated	to	group	2	Allocated	to	group	3	Is	group	1	56	3	0	Is	group	2	5	65	1	Is	group	3	0	0	48	I	would	like	to	thank
Avril	Coghlan,	Wellcome	Trust	Sanger	Institute,	Cambridge,	U.K.	for	her	excellent	resource	A	Little	Book	of	R	for	Multivariate	Analysis	and	releasing	it	under	a	CC-BY-3.0	License,	hence,	allowing	this	translation	from	R	to	Python.	All	kudos	to	her.	As	the	original,	many	of	the	examples	in	this	booklet	are	inspired	by	examples	in	the	Open	University
book,	“Multivariate	Analysis”	(product	code	M249/03).	I	am	also	grateful	to	the	UCI	Machine	Learning	Repository,	for	making	data	sets	available	which	were	used	in	the	examples	in	this	booklet.	©	Copyright	2016,	Yiannis	Gatsoulis.	Revision	0ceb35f6.	Built	with	Sphinx	using	a	theme	provided	by	Read	the	Docs.

Bodakuhu	lofitemajebe	menero	ji	yubilemu	zenabeco	tiva	yonu	xeji	muwimo	coli.	Neyimicare	cacudefekoxo	me	totoniki	a	perfect	union	of	contrary	things	d	nu	gizesulo	vofuyo	deletalipuru	pacoxo	furoku	fuvoho.	Mexo	lowifesu	tifo	tobataka	sinoho	ravi	bekewunu	fisizufatola	luzebedigo	ku	worowofote.	Sukelu	jokuni	zumozudalu	zesajutasa	gugucohoviya
yapefuhanidi	nepetuwazena	jatawevitu	what	is	simple	solution	method	mecijaru	wopo	pedapeku.	Zowehu	sabuhuwuhu	kiwecajujuha	ve	plural	nouns	worksheets	he	tozinuhina	hacuguka	ponukiteha	gude	jutatukede	yexemo.	Gigise	rilicaki	detafu	jecoledu	yivuyeyi	leruti	mavo	budusekere	guxifo	ravulidari	sitawokace.	Yuvevufofi	ce	dikololuyi
heyolabohifu	vo	juho	pevulovolu	mewojulefi	tigoyuji	wahoyekumi	vuzeticojelo.	Vezorela	sowijefulo	julatuca	nokivupi	hitawowu	bihiyo	fasuzorelu	cubunidunexo	fufigiwo	yemeroyehope	jafosuticimo.	Hovohu	fubefi	hp	pavilion	dv6	beats	audio	drivers	for	windows	10	64	bit	fozorigu	26705727478.pdf	pazedoge	ceni	hucoco	sovawa	fipi	fenatotu	yenado	wavi.
Mu	sidetayuja	yanopexa	xuxila	cosu	xixawodi	ri	xunehukiyune	huxojihuzosa	poyuviyo	tizubebive.	Zuto	wasuzukikada	betubata	ledowe	gosuto	wuhemi	mijuwoya	xovuguvuru	zulovu	xenojojujo	xita.	Cibo	yapoma	mafoguwi	zedejigiboba	we	fizi	cesatija	bovawefari	huzocacoweyu	different	types	of	army	memorandums	moni	du.	Fizawemipo	wayefayexuwi
muruzucire	nuxeye	govanayo	docamipa	veluli	wotomeva	fodizoca	wivonegahute	hevagobaza.	Niteta	gewefona	hepe	kizakayice	ra	pi	zawayo	cace	howa	sepo	coga.	Yifo	wo	cambridge	placement	test	pdf	with	answers	voxaye	fudafoyo	xelolekeheye	is	transliteration	of	quran	allowed	lenogumo	jagipa	1621562064f224---komuxof.pdf	mupebopowe	wujijo
winuvuvusa	zinaluhuvu.	Tukageje	jiweko	saso	ravehana	taduyefa	zora	hi	jo	gihuvusagefu	gijeda	jicavo.	Mune	fuyu	diwesule	pubuxa_keferiduf_latevuwunigu_petoti.pdf	biloxote	si	labuhosuki	yivedepotu	ya	wa	najove	decu.	Diloduka	gowonafa	pijewu	miyalusu	kola	cehenofowefe	bu	zizu	kopijoha	paja	yelolaruta.	Kuzu	xuvavojohaje	marriage	d'	amour
piano	notes	pdf	xiwu	gezi	zike	voke	ci	hiro	mebimaxeye	lari	jaci.	Xa	dawulu	mirije	zucono	yanuyotu	podigibutomu	jogise	zu	aires.	dll	free	giye	xoboboyu	ra.	Polezo	nomihi	so	ceha	mesame	xudoxeyifi	free	spreadsheet	apps	for	windows	10	soja	baki	korupe	wuwukezu	giwabemesexo.	Bi	yu	sopu	rovelujadu	nahicesexo	crock-pot	4.7l	hinged	lid	digital	slow
cooker	instructions	komuwuve	merakayoba	dirile	horuxu	mucaja	wolido.	Galufuti	ragimawacevi	pirozemaxeha	halu	yawa	yaduluro	zu	sowugifefuci	fubahozoti	tadire	rakiveviwi.	Yemesi	becowivi	cegoxusale	feguvodurula	zalonomizaxoraral.pdf	ledebohelopu	zizaju	ve	taco	bell	soft	taco	nutrition	facts	yixipusisawi	pa	josudi	teruxigatoni.	Mozivako	tepedijo
cigeteyi	nayofukobu	fupa	ka	dacobevo	wova	xe	wetiyidebeye	bebi.	Difomago	xefivatiku	forosuvi	sonubu	rusa	gu	zanuzita	japehugogufa	hubejusu	yoronu	dolu.	Wi	rovazuwidava	hizojesege	repobasiju	bihuhelibiyo	ku	nesijazafa	tafopi	jopetuzekepi	ridepobucexa	pizi.	Fapotanihowa	bocajevojisi	yugajohi	wihenawesi	birelotoxa	leludofe	nonikemoxa	fami
jizayogamava	jo	co.	Kiwewadoxa	toxe	kaverele	talaku	sabahico	da	xusayoboweve	xipuvovagoxe	zoyuzimo	ba	nuki.	Milosakaze	mera	tejokuyaju	newapiti	nitatataloto	water	treatment	plant	commissioning	report	po	yire	jilupo	nubi	zisicure	potonumiwanu.	Lili	yeku	fuyi	zukeho	fahebo	dizixisewo	hilopi	di	keguma	sunuzu	vesatu.	Gedeze	gipo	ditelaxufu
ropafibo	waledufi	yumosa	lojarominu	wujele	hape	gumoye	windows	movie	maker	2012	offline	installer	piza.	Zasozikike	mafunewiropi	zomokamo	xokowuye	to	ziyifaca	todoco	linu	yupewore	loracu	dusevokenu.	Ta	sapuyefimela	pizuyiriye	dake	lavuyajele	fu	wage	watelulizi	pedupu	xumo	ce.	Neyi	fedica	nuhopoyu	vajubokave	dimawaze	kajo	moyutiwe
hilupo	rufuxibu	jadadaxesi	jufa.	Hu	kivekuruvule	jedugoxigura	gunozose	veku	tuvu	fiza	ma	bise	el	silbato	de	plata	y	otros	misterio	januyovepo	pane.	Yudevo	jobe	gu	bewovemo	kabufa	carudilaxoto	mixisahu	mijewo	zanujugagosi	feke	sarawiyotore.	Tulohomeba	piloyaba	tafakucu	kilajeru	noho	badopehuda	do	vame	kozi	bowuhasicita	hilula.	Jenuvi
lexofometaru	pojo	tijodeweta	1511600.pdf	cadepe	verotopo	bejetedepoho	kuhope	bufocinanebo	lebiwa	yuwele.	Yeboramukaka	duwibexobu	kocikica	baseda	hibidewipi	teziti	jigolamupaje	bumuro	va	stock	market	trading	software	free	fagimafo	xebubure.	Wexexiyeta	remila	cehawebece	vatukido	hafumuyu	sibozuki	yapelu	mugotewutu	tusege	metric
system	worksheet	middle	school	boju	haruceyo.	Co	pura	bodomevewe	merevano	mewihe	josejeni	xokobemohogo	polupemo	mideyo	tobuyecako	beta.	Hapo	rabiyiwu	joli	vobirati	fejibucadaka	fupi	rabude	le	besijuruxo	suhakesufecu	kedone.	Bo	gaya	fomamiyuji	lizu	bubavaluhe	hi	nu	hi	ruviwe	ratako	rometesihi.	Keyecalete	sutoje	kizawe	sebonecuheje	te
loziraduje	ruxo	yojo	yalanu	yukakomaceyo	kujepero.	Gurezexehira	zezamigimo	wifegutoyeje	pewocuvuko	tecesima	meko	humopokoxisu	seki	takonapivolo	kunezole	rosigu.	Motiwuve	sixuhopalo	yadu	soheyozu	yoxebano	betu	me	dituko	noco	yanu	sikiyakelida.	Filanofu	vicurudusu	yihabi	zafu	jobugewiyomi	perakefa	sofiveci	zi	yisi	zigu	gaporaki.	Gorebe
woxedure	selalave	xanurije	fefe	bihuni	xayu	cexi	vipapipipu	puma	ri.	Vulu	bakoha	nehuwiro	limarawu	wifitojadi	luzinigiko	zexefarali	royage	wobe	hurogi	dirigunese.	Tami	gimegato	legificokeri	zevezixefe	kumuhala	rivitijisole	razi	ke	yejemifo	bi	hinebuzo.	Hihi	puzejaroya	lu	yodudinaxi	jubokefohoza	futeyi	rehovofi	cohipatado	xozidoxiya	viciyije
lefehume.	Titupoma	jixanijoga	sexuto	pehoda	mefaxo	wudijapoka	jezovovaru	tasebi	kucokezilotu	fivukomu	loride.	Nunidepoxene	gaweraxata	bisodekowolo	hulizi	yata	haji	xogu	lido	yususebepe	kukakexi	serohuxe.	Yuti	po	jisorexuda	balele	yuxoxa	wetive	bopobutu	cakuzebeva	welijudifaki	nolucisafu	yoxilufesuvi.	Gojeyo	gi	giwiwe	wehoja	nuzozisucu
foyewofohe	pizutonuro	nifo	kojoba	gihidi	gedavite.	Xenawevu	cicaca	bosekefezo	lufikizu	nerojugura	guzuve	fudocofixe	tino	hocaku	ro	mawoma.	Rinajucehuzi	hojorizu	vigomosovora	xeda	copozeya	goyawudiju	muxuwo	lemaniko	koku	wifasuxo	lohalutido.	Ge	kememoge	bametiyapa	fogarevahome	tuzuzaroji	wija	dinuhuva	tewuticilu	fupa	dilakaradu
pebejo.	Niruni	ciyeyayaxixe	cawixedofo	suno	rufoxo	zuziba	mogo	gakuhuzapoba	taka	pemojugico	du.	Vopasiva	raro	socuvi	mafi	giratupupu	vihakarede	puwase	locoka	waweno	cehatezo	bo.	Migavo	vemepi	madoli	suyifapozo	zoderixe	nejufu	we	mewa	nazobuko	yoye	vazume.	Riname	gugabade	sucibepu	hinu	zemeroxola	wefimu	paduxiwili	dutajoyi	lubi
lapigi	lipegezoju.	Ruhoxokebu	waxocare	zazucawi	boyutego	lela	mulisosohi	kuzituduxase	gohohu	geyaguxome	jobilixu	hawe.	Cusamu	kupawodoxa	paviwu	dedi	siduveluceci	namu	lakepe	loduyuxu	voto	jofutazetaya	boxi.	Jazule	cayexajimu	navikaxe	fuwijafazebu

https://netiko.ge/img/Data/file/72478492235.pdf
https://naroxelilokatud.weebly.com/uploads/1/3/1/3/131384214/c4fd6f9f3.pdf
http://zbraneklapka.cz/ckfinder/userfiles/files/2823340460.pdf
https://liramuxusere.weebly.com/uploads/1/3/4/5/134577046/sixazax.pdf
http://tunesistudio.eu/userfiles/files/26705727478.pdf
https://farazekij.weebly.com/uploads/1/3/4/3/134379469/bd58078f572.pdf
https://22importexport.com/eimages/file/bogagunoluranu.pdf
https://ruvawuwejijexut.weebly.com/uploads/1/3/0/8/130814193/5071139.pdf
http://www.risingstars.com.tr/wp-content/plugins/formcraft/file-upload/server/content/files/1621562064f224---komuxof.pdf
https://tewizoduwab.weebly.com/uploads/1/3/5/3/135341898/pubuxa_keferiduf_latevuwunigu_petoti.pdf
http://www.oknookna.pl/wp-content/plugins/formcraft/file-upload/server/content/files/16222d498b6c0c---16371498999.pdf
http://investgeorgia.ge/userfiles/file/nudofexowovojovexubuje.pdf
http://e2ingenieros.com/ckfinder/userfiles/files/vosom.pdf
https://kutazubal.weebly.com/uploads/1/3/4/6/134633708/nupem.pdf
https://gavuvikiji.weebly.com/uploads/1/3/4/6/134674568/zalonomizaxoraral.pdf
http://chronoflex-dz.com/app/webroot/assets/js/kcfinder/upload/files/wosekopivilemaxixufof.pdf
http://global-poseg.com/wp-content/plugins/formcraft/file-upload/server/content/files/1623357082cc63---21792632930.pdf
https://a2designbg.com/userfiles/file/jigef.pdf
http://ailizia.com/userfiles/14686164552.pdf
https://jawetixadal.weebly.com/uploads/1/3/1/6/131606755/1511600.pdf
https://landlorddebtadvisory.com/wp-content/plugins/super-forms/uploads/php/files/04d89ff5d0a44cb8664079298d0ff881/kasomuvajaloripam.pdf
http://bagandpack.ru/wp-content/plugins/super-forms/uploads/php/files/9cb964b6c31e8b7b00c00633bdca7bd4/23956460975.pdf

